Home
  • About
  • Archive
  • Contact
  • Subscribe
Computing Has Changed Biology Forever

And people are starting to notice

In 1991, a prescient editorial in Nature by Harvard’s Walter Gilbert, PhD, (“Towards a paradigm shift in biology”) included these observations on the utility and impact of computing...
Apr, 01, 2006
Computing Better Enzymes: Optimizing Directed Evolution

Using computation, researchers narrow the search space for directed evolution; guide mutagenesis; and create de novo enzymes

Enzymes are among nature’s crowning achievements: they accelerate chemical reactions, making life possible. People have co-opted natural enzymes for industrial use for thousands of years (think...
Feb, 19, 2013
Computing Gene Interactions: Functional and Statistical Approaches Converge

Epistasis explored

When people work together, some individuals may hinder team performance—essentially masking the abilities of other members—while others may boost the group’s performance beyond the...
epistasis
Sep, 01, 2011
Computing the Ravages of Time: Using Algorithms To Tackle Alzheimer’s Disease

Biomarker research, genetics, and imaging are all coming into play

In 1906, at a small medical meeting in Tübingen, Germany, physician Alois Alzheimer gave a now-famous presentation about a puzzling patient. At age 51, Auguste D.’s memory was failing...
Oct, 01, 2007
Putting Heads Together

Upcoming biocomputing conferences

The 6th Annual International Conference on Computational Systems Bioinformatics (CSB2007) coordinated by the Life Sciences Society. WHAT: This conference is designed for any scientist interested in...
Jul, 01, 2007
The NCBC Centers: Incubators for the Next Generation of Science and Scientists

The NCBCs legacy of human capital

In this issue of Biomedical Computation Review, we feature a look at the NIH Roadmap National Centers for Biomedical Computing (NCBC) program. The NCBC program was a response to the recommendations...
Oct, 19, 2012
Successful Collaborations: Helping biomedicine and computation play well together

Collaborations are a fact of life for interdisciplinary fields like biomedical computing, and social scientists can help researchers understand how to make them more productive

Social scientists who study science have noticed a trend: More and more researchers are collaborating. Over the last twenty years, the number of co-authored papers has increased in every scientific...
Jul, 01, 2008
Bringing Supercomputers to Life (Sciences)

Supercomputers open up new horizons, offering the possibility of discovering new ways to understand life’s complexity

Their very names sound like dinosaurs. Teracomputers. Petacomputers. These are, in fact, the dinosaurs of the digital world—monstrous, hungry and powerful. But unlike the extinct...
Oct, 01, 2006
Brain Chips

A new technique for measuring neuronal activity on a chip

Neurons are tough cells to study. There are a staggering number of them in most animals, and they are constantly talking with one another. One way to look at groups of neurons in real-time is to take...
Oct, 01, 2010
An In Silico Time Machine

Anton:  A computer dedicated to molecular dynamics simulations.

In biology, many exciting events happen on the millisecond timescale—proteins fold, channels open and close, and enzymes act on their substrates. Atomic-level simulations of this duration are...
Oct, 01, 2008
  •  
  • 1 of 18
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

Bayesian Networks: A Quick Intro

06/01/05 by Karen Sachs

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe