Home
  • About
  • Archive
  • Contact
  • Subscribe
The Cell in 2010: A Modeling Odyssey

How cell-centered models are adding fundamental insights into our understanding of cell behaviors

The cell is like our financial system: Even if you have a diagram of all the complex interactions going on, you still cannot intuit how the whole system will react when perturbed. Indeed, the cell...
Apr, 01, 2010
Bacteria with Byte

AgentCell is the first simulation program to model a biochemical network at the molecular, single cell, and population levels simultaneously.

When a bacterium swims toward food, it follows a chaotic path, alternating between spinning randomly and driving forward, or ‘tumbling’ and ‘running.’ Computer scientists at...
Sep, 01, 2005
3D Angiogenesis Modeled

CompuCell-3D models behaviors rather than genes

Researchers have successfully simulated how growing blood vessels affect the sizes and shapes of tumors using a 3-D model based solely on how cells behave—without reference to intracellular...
Jan, 01, 2010
Untangling Integrative Analysis

How researchers are combining disparate data types and simulating systems that contain many different moving parts

13 years ago Markus Covert, PhD, read a New York Times article that changed his life.  The article quoted a prominent microbiologist who suggested that the ultimate test of one’s...
Feb, 16, 2013
Simulating Cells in Context: Bringing Mechanics Into Play
Like humans, cells are affected by their physical environment, their neighbors, the context in which they exist. Much research has focused on the chemical signals that control cell behavior. But...
developmental biology
Sep, 01, 2011
The Physiome: Standardizing the Physiome

A closer look at the curation of models discussed in The Physiome: A Mission Imperative

Multi-scale quantitative models need to be validated and reproducible if they are to be useful for clinical workflows, says Hunter. The Physiome infrastructure developed by Hunter, Dr Poul Nielsen...
Jun, 01, 2010
On Simulating Growth and Form

Simulations can teach us how young bodies and faces develop; how an artery compensates for decades of fatty plaque deposits by growing and thickening its walls; how tissue engineers can best coax endothelial cells to develop into organized sheets of skin for burn patients; and how cancerous tumors invade neighboring tissue.

For better or for worse, and on many levels, our tissues never stop growing and changing. While developing from childhood to old age, we grow not only bone, cartilage, fat, muscle and skin, but also...
Apr, 01, 2008
More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

To the casual observer, stem cells offer the almost magical promise of—Voila!—turning into exactly the kind of cell needed to repair an injured spinal cord or replace a damaged organ. And...
stem cell
Apr, 01, 2010
Cell Division’s Surprise Twist
During the final step of cell division, a ring of proteins pinches the cell in two—a process often likened to a purse string drawing shut. The analogy evokes a picture of thread-like proteins...
Apr, 01, 2008
FOLLOW THE MONEY: Big Grants in Biomedical Computing

Several big-dollar initiatives received NIH funding in late 2010

In the current economic climate, every research dollar counts. Fortunately, when it comes to biomedical computing, not everyone has been left counting change. Several big-dollar initiatives received...
brain, immunity, network
Apr, 01, 2011
  •  
  • 1 of 24
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe