Home
  • About
  • Archive
  • Contact
  • Subscribe
Dock This: In Silico Drug Design Feeds Drug Development

As algorithms evolve, computing power explodes, and scientists solve a greater number of 3-D protein structures, computer-aided design has the potential to dramatically cut the cost and time of drug discovery

Once upon a time, not long ago, HIV/AIDS was a scourge, killing anyone who contracted the deadly virus. Now, many people are living with the disease, which they control with drugs initially developed...
Jul, 01, 2007
Computing Better Enzymes: Optimizing Directed Evolution

Using computation, researchers narrow the search space for directed evolution; guide mutagenesis; and create de novo enzymes

Enzymes are among nature’s crowning achievements: they accelerate chemical reactions, making life possible. People have co-opted natural enzymes for industrial use for thousands of years (think...
Feb, 19, 2013
Simulated Metabolism -- A First Step Toward Simulated Cells

Having developed detailed and sophisticated models of both E. Coli and human metabolism, researchers can begin to build toward a whole cell model that will be useful for the study of human health and disease.

If biologists really understood the functioning of the genome, they could in principle recreate it in silico. Instead of a choreographed swirl of molecules inside a living cell, electrons...
Oct, 01, 2008
Where Tuberculosis Meets Computation: 10 Points of Intersection

Computation offers a window into a disease often described as a black box

The growing threats of multi-drug resistant (MDR) and extensively drug resistant (XDR) tuberculosis (TB) are spurring worldwide interest in faster and more innovative research approaches, such as...
Jun, 06, 2012
The Golden Age of Public Databases: Speeding Biomedical Discovery

Public databases impact not only how research is done but what kind of research is done in the first place.

The setting: a scientific conference in January 2008. The speaker, Bruce Ponder, MD, PhD, an oncology professor at Cambridge University, is describing a previously unknown link between a particular...
Oct, 01, 2008
The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes and a prediction of what's to come

The last ten years have seen huge leaps in biomedical computing. We now have new ways to integrate and understand vast quantities of data; the capacity for multi-scale biological modeling; and a...
bioinformatics tools, biomedical computing, CAD, computational modeling, data mining, disease surveillance, dynamic modeling, education, eric jakobsson, function prediction, genetic association, genome annotation, in silico screening, medical informatics, neuromodeling, prosthetics, sequence alignment, structure prediction, systems biology, systems biomedicine, telemedicine, tomography
Jun, 01, 2005
Betting on Genome Interpretation

Six startups jockey for a place at the table. Who will succeed?

A handful of startups are wagering that genome interpretation is the next big thing.    Why is this business space so hot?  “Once you can produce a better faster genome, thanks...
Jun, 20, 2013

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

Bayesian Networks: A Quick Intro

06/01/05 by Karen Sachs

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe