Home
  • About
  • Archive
  • Contact
  • Subscribe
Resolution Limits of Optical Microscopy and the Mind

How precise an image can fluorescence microscopy provide?

As modern optics and cell biology have flourished in recent years, they’ve each driven innovation in the other. Yet commonly employed imaging techniques, such as fluorescence microscopy, have...
fluorescence, microscopy
Sep, 01, 2011
Behind the Connectome Commotion

Exploring the current state of connectomics--in the midst of hype

Connectomics is having a moment. Following on the heels of genomics, proteomics, transcriptomics, metabolomics, and microbiomics, the latest “omic” to seize the spotlight is generating...
brain, connectome
Jun, 20, 2013
Imaging Collections: How They're Stacking Up

As barriers to massive imaging collections fall, researchers can look at human systems in their entirety rather than in pieces

In the beginning there was the Visible Human. It broke new ground by gathering some 2,000 serial images from a death row inmate’s cadaver, and was the first time researchers had sectioned a...
Jul, 01, 2007
Cell Division’s Surprise Twist
During the final step of cell division, a ring of proteins pinches the cell in two—a process often likened to a purse string drawing shut. The analogy evokes a picture of thread-like proteins...
Apr, 01, 2008
Multiscale Modeling in Biomedical Research

New approaches extend multiscale models to represent cellular mesoscales and bridge from molecular to cellular models

In an era of increasingly comprehensive molecular characterizations of living systems, computation has emerged as a key technology to facilitate integrative understanding of biological mechanisms....
Feb, 19, 2013
Art That's A BLAST

Ecce Homology is a physically interactive new-media work that visualizes genetic data as calligraphic forms.

A group of artists and scientists has created an interactive artwork using BLAST (Basic Local Alignment Search Tool), one of the foundational algorithms for comparative genomics. Normally, the BLAST...
Sep, 01, 2005
Protein Mechanica: Structural Modeling for the Experimentalist

Filling a gap in single molecule experimental work

Scientists sometimes find themselves up to their elbows in Styrofoam balls, pipe cleaners, and metal rods as they try to build models of the molecules they are studying. Now, they can exchange all...
Apr, 01, 2010
Janelia Farm: Cultivating Scientists

Janelia farmers pursue novel, cross-disciplinary collaborations to work on long-term, unwieldy scientific problems difficult to tackle in a single laboratory

The folks at Howard Hughes Medical Institute who dreamed up Janelia Farm say it is as much a social innovation as a scientific one. “We are creating a different culture here,” says Gerald...
Jul, 01, 2006
An In Silico Time Machine

Anton:  A computer dedicated to molecular dynamics simulations.

In biology, many exciting events happen on the millisecond timescale—proteins fold, channels open and close, and enzymes act on their substrates. Atomic-level simulations of this duration are...
Oct, 01, 2008
Pore Picture Construction

By computationally combining incomplete imaging information with bits and pieces of structural data from all sorts of different experiments, researchers have worked out the protein-by-protein structure of an important cellular assembly called the nuclear pore complex.

Like puzzles? Here’s a tough one: Try figuring out the construction of a nearly 500-piece machine without blueprints or a complete picture. Biologists have now accomplished just such a feat,...
Apr, 01, 2008
  •  
  • 1 of 2
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

Bayesian Networks: A Quick Intro

06/01/05 by Karen Sachs

Twin Curses Plague Biomedical Data Analysis

How to deal with too many dimensions and too...

09/01/05 by Ray Somorjai, PhD

BIOSURVEILLANCE: From Text-mining to Freakidemiology

Researchers are expanding the types of data...

04/01/11 by Katharine Miller

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down...

01/02/12 by Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe