Home
  • About
  • Archive
  • Contact
  • Subscribe
Modeling Whorls of Leaves

Computer simulation helps explain how plants grow

The petals of every flower and the leaves sprouting from every plant stalk have characteristic arrangements, a phenomenon called phyllotaxis. For two centuries, botanists have puzzled over the force...
Jul, 01, 2007
Modeling the Deformable Body
August 2007 saw a surge of new open-source software for simulating musculoskeletal movement. In addition to OpenSim 1.0 (described in the Fall 2007 issue of this magazine), FEBio arrived on the scene...
Apr, 01, 2008
Modeling the Spine, Cord and All

Injury type matters

When the bones and discs of the spinal column are broken, crushed, or displaced, the spinal cord itself may be devastatingly damaged. Now, a new computer model suggests that the manner in...
Jul, 01, 2008
Modeling A Gene Therapy Delivery Vehicle
Gene therapy to correct inherited illnesses hinges on successful delivery of DNA into a person’s cells. Most gene therapists work with viruses to ferry their DNA cargo. Yet the body tends to...
Oct, 01, 2009
Modeling Bacterial Comets

Understanding how actin produces force by pushing rather than squeezing

Rocketing within and between human gut cells, Listeria monocytogenes—a motile, foodborne bacterium—leaves a comet-like tail of actin protein behind it and makes us sick. Scientists have...
Jan, 01, 2010
Modeling Sex’s (Evolutionary) Appeal

Computer model supports one theory of why sex is such a good idea

Sex is a costly undertaking. Finding partners takes time and energy. Sexual contact can transmit disease. And if reproductive success is measured by how many genes you pass on, females would be...
Jul, 01, 2007
Modeling Early Evolution
The fittest organisms survive and produce offspring, according to the Darwinian theory of natural selection. And the changes that make an organism fit happen at the molecular level: when genes mutate...
Oct, 01, 2007
Remodeling by Curvature

Simulating how cell membranes form vesicles

Whenever a cell needs to get rid of waste, transport materials, sort proteins, or build new organelles, membranes remodel themselves. Often that means forming small enclosed compartments called...
Jul, 01, 2007
Modeling Sperm: The Finer Points of Fertilization

Navigating the oviduct and other mysteries

The essential elements of human fertilization are clear: sperm swim through the uterus, travel up the fallopian tube, and fertilize an egg. Not as well understood are the the nitty-gritty details of...
agent-based models, fertilization, sperm
Jun, 19, 2013
FOLLOW THE MONEY: Big Grants in Biomedical Computing

Several big-dollar initiatives received NIH funding in late 2010

In the current economic climate, every research dollar counts. Fortunately, when it comes to biomedical computing, not everyone has been left counting change. Several big-dollar initiatives received...
brain, immunity, network
Apr, 01, 2011
  •  
  • 1 of 15
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe