Home
  • About
  • Archive
  • Contact
  • Subscribe
Reliable Models Now Available

Biomodels curates and annotates models for public use

As systems biologists develop models that attempt to simulate life, they need a good way to make them accessible to others as well as a good way to access other people’s models—and to...
Sep, 01, 2005
Benchmarks for Musculotendon Models

Assuring accuracy and efficiency

In simulations of human activities such as running, hundreds of individual musculotendon models turn on and off to swing the arms and legs. Naturally, these simulations can only be as accurate and...
muscle models, tendon models
Jun, 19, 2013
Reaching Under the Hood of a 20-year-old Musculoskeletal Model

Confidence boost for modelers

It’s often said that all models are wrong, but some are useful. And one model that certainly falls in the “useful” category is the human lower-limb model that Scott Delp published...
Jun, 01, 2010
Neuron Models: Simpler Is Better

Competition inspires model improvements

During the summer of 2009, the International Neuroinformatics Coordinating Facility in Stockholm dangled a nearly $10,000 cash prize in front of neuron modelers and challenged them to do better. And...
Jan, 01, 2010
Untangling Integrative Analysis

How researchers are combining disparate data types and simulating systems that contain many different moving parts

13 years ago Markus Covert, PhD, read a New York Times article that changed his life.  The article quoted a prominent microbiologist who suggested that the ultimate test of one’s...
Feb, 16, 2013
Computational Biology Catches the Flu: Modeling the bug, the host, the world
The flu virus is an evolutionary marvel. Teams of experts design an appropriate flu vaccine annually just to keep up with the microbe’s ability to evade the human immune system. Multiple...
Jul, 01, 2006
Talking Heads

A physically-based facial muscle model for animation

He speaks: “Algorithm.” And you can just about read his lips.   The movie was created using muscle-driven physics-based animation. Other techniques might produce images that look...
Oct, 01, 2007
The Physiome: Standardizing the Physiome

A closer look at the curation of models discussed in The Physiome: A Mission Imperative

Multi-scale quantitative models need to be validated and reproducible if they are to be useful for clinical workflows, says Hunter. The Physiome infrastructure developed by Hunter, Dr Poul Nielsen...
Jun, 01, 2010
From SNPs to Prescriptions: Can Genes Predict Drug Response?

Decades of steady progress in pharmacogenetics have unearthed hundreds of associations between genes and drug response. But the field has to solve some theoretical and practical issues before it can deliver on the promise of personalized drug therapy.

As algorithms go, it’s deceptively simple. Just add together eight weighted pieces of patient information—age, height, weight, race, data about two genes, and a pair of clinical...
Jul, 01, 2009
Reverse Engineering the Brain
For a century, neuroscientists have dissected, traced, eavesdropped on, and are now compiling a seemingly endless cast of players in the nervous system. As we keep gathering more and more molecular...
neuron, reverse engineer
Apr, 01, 2009
  •  
  • 1 of 16
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

Bayesian Networks: A Quick Intro

06/01/05 by Karen Sachs

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe