Home
  • About
  • Archive
  • Contact
  • Subscribe
Open Solutions for Biomedical Research
What can open-source software do for biomedical research? Based on our experience at the National Alliance for Medical Image Computing (NA-MIC), we believe that open source software can be used very...
Mar, 01, 2009
LIFE IS CROWDED: Modeling the Cell's Interior

Modelers are using recent gains in computational power to consider the complex interactions of hundreds or thousands of macromolecules at once--a necessary first step toward whole cell simulation

Molecules in cells behave like people in crowded subway cars. Because they can barely budge or stretch out without bumping into a neighbor, they move more slowly, smush themselves into more compact...
crowding, macromolecule, molecular dynamics
Apr, 01, 2011
Infrastructure and Workforce Needs in Biomedical Informatics and Computational Biology
In science, there is a need to balance research in domain sciences and the infrastructure to support that research. Basic research mediated through peer review is understood to produce useful...
Jan, 01, 2007
Misconceptions of Time

Getting the molecular dynamics car out of the garage

For those who are not practitioners of dynamical simulation methods, such as molecular dynamics (MD), one of the biggest misconceptions relates to time. Specifically, the mismatch between the...
molecular dynamics simulations, time
Jun, 19, 2013
Matters of Time: Tick Tock Go the Simulations

Computing using time steps -- a necessary approximation

Time flows like a continuous, steady river. And it moves forward—never back. These facts create inherent challenges for computer simulations of biological molecules in motion.   It would...
molecular dynamics, timesteps
Jun, 19, 2013
The Physiome: A Mission Imperative

To understand biology—and provide appropriate medical care—scientists need to understand interactions across multiple scales. Hence the Physiome.

This is the reality of human biology: events span a 109 range in lengthscale (molecular to organismal) and a 1014 range in timescale (molecular movement to years). To understand this biology—...
Jun, 01, 2010
Visualizing Markov State Models Using MSMExplorer

A new application automates MSM visualization

An unfolded protein can move through thousands of intermediate structures (conformations) before finding its properly folded state. One approach to understanding this process involves simulating a...
Feb, 19, 2013
Parkinson’s Culprit Modeled

A computational model of alpha-synuclein as it aggregates

Under a microscope, the curious protein clumps that dot the brains of Parkinson’s patients stick out like the culprits they are. But no one has yet caught the protein—alpha-synuclein...
Jul, 01, 2007
Simulating Cells in Context: Bringing Mechanics Into Play
Like humans, cells are affected by their physical environment, their neighbors, the context in which they exist. Much research has focused on the chemical signals that control cell behavior. But...
developmental biology
Sep, 01, 2011
Decoding Promotion
Despite their identical genomes, cells in the body develop distinct personalities—become neurons or liver cells, for instance—due to differences in gene expression. The mechanism that...
Apr, 01, 2009
  •  
  • 1 of 12
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Binary Breathing

2004 grant to create a 3-D model of the...

06/01/05 by Katharine Miller

Biomedical Computation Space

Defining biomedical computation

06/01/05 by David Paik, PhD, Executive Editor

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe