Home
  • About
  • Archive
  • Contact
  • Subscribe
Simulations Find Possible HIV Achilles’ Heel

Molecular dynamics simulations spot alternative drug target

A blindside attack on HIV-1 protease might just combat drug-resistant strains of HIV, according to simulations run by researchers at the University of California, San Diego. When the simulations shut...
Oct, 01, 2010
Meet the Skeptics: Why Some Doubt Biomedical Models - and What it Takes to Win Them Over

Disentangling the different types of skeptics and what modelers can learn from each.

What are the telltale signs of a modeling talk at a biology conference? Just look for the sighs, shifting, and eye-rolling in the audience, says Donald C. Bolser, PhD, professor of physiological...
Jun, 05, 2012
Simbios: Bringing Biomedical Simulation to Your Fingertips

How Simbios' state-of-the-art software tools are contributing to high-impact biomedical research

Simbios began with a simple idea: that physics-based simulation of biological structures at all scales could benefit from a unified tool-building effort.   At the same time, the thinking went,...
Oct, 01, 2009
Matters of Time: Tick Tock Go the Simulations

Computing using time steps -- a necessary approximation

Time flows like a continuous, steady river. And it moves forward—never back. These facts create inherent challenges for computer simulations of biological molecules in motion.   It would...
molecular dynamics, timesteps
Jun, 19, 2013
Whole Virus Simulation

Simulation of a one-million-atom virus reveals unexpected twist

Giving new meaning to the phrase computer virus, researchers have created a computer simulation of an entire biological virus comprising approximately one million atoms.   “It wasn’t...
Jul, 01, 2006
Aquaporin Simulations De-Bunk Gas Exchange Assumptions
Biologists have long taken gas exchange for granted, assuming that gases simply seep through the cell’s lipid membrane. Since 1998, however, evidence has been building that gases might also be...
Jul, 01, 2007
2012 Update on the National Centers for Biomedical Computing

The Principal Investigators weigh in

Ever since the National Institutes of Health (NIH) began funding the National Centers for Biomedical Computing (NCBCs) just over seven years ago, these powerhouses have been plugging away, building...
NCBC
Feb, 29, 2012
Life in Motion: Simulation from Particles to People

Computational simulations of life in motion at every scale—molecular, cellular, tissue-level, and whole organism—are boosting our understanding of the role mechanics plays in controlling life.

From atoms and molecules to insects, dinosaurs, and humans, computational researchers are finding that much of life can be understood in mechanical terms. Indeed, the machines of life are...
Jan, 01, 2008
A Giant Leap for Open Source Simulation
Researchers can now create musculoskeletal models and simulations on an open source platform. In August, Simbios researchers released OpenSim 1.0. This freely available software can, in about 20...
Oct, 01, 2007
The Ease and Grace of OpenSim 3.0

New release improves both GUI and API

OpenSim, the neuromuscular modeling and simulation software, is now available in a new digit: 3.0. The change (up from 2.4) reflects significant improvements that make this open source tool more...
OpenSim
Oct, 19, 2012
  •  
  • 1 of 18
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

Bayesian Networks: A Quick Intro

06/01/05 by Karen Sachs

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe