Home
  • About
  • Archive
  • Contact
  • Subscribe
Benchmarks for Musculotendon Models

Assuring accuracy and efficiency

In simulations of human activities such as running, hundreds of individual musculotendon models turn on and off to swing the arms and legs. Naturally, these simulations can only be as accurate and...
muscle models, tendon models
Jun, 19, 2013
NewsBytes: Winter 2005-2006
T-Rex in the Slow Lane by Kristen Cobb   Tyrannosaurus rex is often pictured baring its teeth, crouching, and running swiftly after its prey, but these images are largely based on human fancy...
Jan, 01, 2006
An insider’s view of biological structures
In March, Simbios released version 1.0 of the SimTK Simulation toolkit. A cornerstone of this release is Simbody, a new piece of the open-source SimTK Core toolkit for physics-based simulation....
Apr, 01, 2008
OpenMM: Bringing GPU Acceleration Capabilities to Molecular Dynamics

OpenMM provides a common interface for doing MD simulations on GPUs

Over the last three years, the lab of Vijay Pande, PhD, at Stanford University has optimized their molecular dynamics (MD) algorithms to take advantage of the fast computing that’s possible...
Jul, 01, 2008
Now Available: User-Friendly RNA Dynamics Applications
Now, with just a few mouse clicks, anyone with a computer and an Internet connection can create graphic images of RNA molecules (using ToRNADo) or generate the ion environments that surround these...
Jan, 01, 2007
A Giant Leap for Open Source Simulation
Researchers can now create musculoskeletal models and simulations on an open source platform. In August, Simbios researchers released OpenSim 1.0. This freely available software can, in about 20...
Oct, 01, 2007
Enhanced Function Recognition in Protein Trajectories over Space and Time

Simulating molecular movement gives a more accurate view of binding sites.

If a picture’s worth a thousand words, then a motion picture, such as that provided by molecular dynamics (MD) simulations, must contain a wealth of information.  It’s this potential...
Oct, 01, 2008
Simplifying the Science and Art of Molecular Dynamics
Using molecular dynamics (MD) software, scientists can simulate molecular movement to study biological phenomena that currently cannot be observed experimentally.    But the value of MD...
Jul, 01, 2009
SimVascular to Simulate Cardiovascular Flow
On the computer screen, vessels throb realistically with each pump of the heart while the river of blood swirls and pools at curves and intersections. This is a simulation built with SimVascular...
Apr, 01, 2007
A Big Step Forward for OpenSim

OpenSim 2.0 promises greater opportunities for customization

With its initial release two years ago, OpenSim offered researchers a powerful open-source application for simulating movement. Simple enough to be used by high school students yet advanced enough to...
Jan, 01, 2010
  •  
  • 1 of 21
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

Bayesian Networks: A Quick Intro

06/01/05 by Karen Sachs

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe