Home
  • About
  • Archive
  • Contact
  • Subscribe
Benchmarks for Musculotendon Models

Assuring accuracy and efficiency

In simulations of human activities such as running, hundreds of individual musculotendon models turn on and off to swing the arms and legs. Naturally, these simulations can only be as accurate and...
muscle models, tendon models
Jun, 19, 2013
Reliable Models Now Available

Biomodels curates and annotates models for public use

As systems biologists develop models that attempt to simulate life, they need a good way to make them accessible to others as well as a good way to access other people’s models—and to...
Sep, 01, 2005
Neuron Models: Simpler Is Better

Competition inspires model improvements

During the summer of 2009, the International Neuroinformatics Coordinating Facility in Stockholm dangled a nearly $10,000 cash prize in front of neuron modelers and challenged them to do better. And...
Jan, 01, 2010
Reaching Under the Hood of a 20-year-old Musculoskeletal Model

Confidence boost for modelers

It’s often said that all models are wrong, but some are useful. And one model that certainly falls in the “useful” category is the human lower-limb model that Scott Delp published...
Jun, 01, 2010
Untangling Integrative Analysis

How researchers are combining disparate data types and simulating systems that contain many different moving parts

13 years ago Markus Covert, PhD, read a New York Times article that changed his life.  The article quoted a prominent microbiologist who suggested that the ultimate test of one’s...
Feb, 16, 2013
Computational Biology Catches the Flu: Modeling the bug, the host, the world
The flu virus is an evolutionary marvel. Teams of experts design an appropriate flu vaccine annually just to keep up with the microbe’s ability to evade the human immune system. Multiple...
Jul, 01, 2006
Computational Biomechanics: Making Strides Toward Patient Care

Moving from intuition to evidence-based intervention

To understand how muscles contract and joints flex, researchers have dissected cadavers and experimented with animals. They can describe how bones, muscles, and tendons connect in a complicated...
Jan, 01, 2007
The Physiome: Standardizing the Physiome

A closer look at the curation of models discussed in The Physiome: A Mission Imperative

Multi-scale quantitative models need to be validated and reproducible if they are to be useful for clinical workflows, says Hunter. The Physiome infrastructure developed by Hunter, Dr Poul Nielsen...
Jun, 01, 2010
Modeling the Deformable Body
August 2007 saw a surge of new open-source software for simulating musculoskeletal movement. In addition to OpenSim 1.0 (described in the Fall 2007 issue of this magazine), FEBio arrived on the scene...
Apr, 01, 2008
OpenSim User Profile: Katherine Holzbaur, PhD

Katherine Holzbaur of Wake Forest University Medical School simulates the biomechanics of the upper limb.

from http://biomedicalcomputationreview.org/content/simbios-bringing-biomedical-simulation-your-fingertips   Katherine Holzbaur, PhD, assistant professor of biomedical engineering at Wake Forest...
Oct, 01, 2009
  •  
  • 1 of 15
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

Bayesian Networks: A Quick Intro

06/01/05 by Karen Sachs

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe