Home
  • About
  • Archive
  • Contact
  • Subscribe
Mining Biomedical Literature: Using Computers to Extract Knowledge Nuggets

Researchers are not simply retrieving and repackaging what is already known, but are also deriving new knowledge by discovering connections that were previously unnoticed.

Not long ago, reading biomedical literature involved hours in the library combing through rows of dusty periodicals—not to mention pocketfuls of change for the copy machine. Now, although the...
Jul, 01, 2008
Modeling Whorls of Leaves

Computer simulation helps explain how plants grow

The petals of every flower and the leaves sprouting from every plant stalk have characteristic arrangements, a phenomenon called phyllotaxis. For two centuries, botanists have puzzled over the force...
Jul, 01, 2007
Reverse-Engineering Transcriptional Networks

Finding the Master Regulators

A cell may change states several times in its lifetime—from a stem cell to a specialized cell, for example, or from a normal cell to a cancerous one. Each time this happens, a veritable army of...
Apr, 01, 2010
An Avatar of Human Health

Visualizing a single, public body

The mesh body of a human form floats over the Brooklyn Bridge. Dots of color, embedded with video testimonials, share the collective health problems of 9/11 survivors. In this incarnation,...
Jul, 01, 2008
On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical Computing take off

WHY NATIONAL CENTERS? Four National Centers for Biomedical Computing were launched by the NIH in 2004 with $20 million in funding for each center over five years. The reason: We need to make...
Jun, 01, 2005
Point/Counterpoint: Should there be a separate funding mechanism for the development and maintenance of software and infrastructure?
  POINT/   NO:  Grant applications for the development and maintenance of software and infrastructure should compete with basic research applications. Biomedicine has a strong...
Jul, 01, 2009
Dock This: In Silico Drug Design Feeds Drug Development

As algorithms evolve, computing power explodes, and scientists solve a greater number of 3-D protein structures, computer-aided design has the potential to dramatically cut the cost and time of drug discovery

Once upon a time, not long ago, HIV/AIDS was a scourge, killing anyone who contracted the deadly virus. Now, many people are living with the disease, which they control with drugs initially developed...
Jul, 01, 2007
Bringing Supercomputers to Life (Sciences)

Supercomputers open up new horizons, offering the possibility of discovering new ways to understand life’s complexity

Their very names sound like dinosaurs. Teracomputers. Petacomputers. These are, in fact, the dinosaurs of the digital world—monstrous, hungry and powerful. But unlike the extinct...
Oct, 01, 2006
Simulating a Scaffold for Bone Growth

Using a 3-D computer model, scientists have simulated stem cells growing within a scaffold to predict which combination of  properties will produce the most bone

Designing a scaffold, the internal structure that helps patients regenerate bone, is a delicate balancing act. The scaffold must be strong enough to protect the injury, porous enough to allow...
Jan, 01, 2008
Computing the Ravages of Time: Using Algorithms To Tackle Alzheimer’s Disease

Biomarker research, genetics, and imaging are all coming into play

In 1906, at a small medical meeting in Tübingen, Germany, physician Alois Alzheimer gave a now-famous presentation about a puzzling patient. At age 51, Auguste D.’s memory was failing...
Oct, 01, 2007
  • ‹‹
  • 2 of 26
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

Bayesian Networks: A Quick Intro

06/01/05 by Karen Sachs

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe