Home
  • About
  • Archive
  • Contact
  • Subscribe
The Physiome: Standardizing the Physiome

A closer look at the curation of models discussed in The Physiome: A Mission Imperative

Multi-scale quantitative models need to be validated and reproducible if they are to be useful for clinical workflows, says Hunter. The Physiome infrastructure developed by Hunter, Dr Poul Nielsen...
Jun, 01, 2010
Simplifying the Science and Art of Molecular Dynamics
Using molecular dynamics (MD) software, scientists can simulate molecular movement to study biological phenomena that currently cannot be observed experimentally.    But the value of MD...
Jul, 01, 2009
3D Angiogenesis Modeled

CompuCell-3D models behaviors rather than genes

Researchers have successfully simulated how growing blood vessels affect the sizes and shapes of tumors using a 3-D model based solely on how cells behave—without reference to intracellular...
Jan, 01, 2010
The Cell in 2010: A Modeling Odyssey

How cell-centered models are adding fundamental insights into our understanding of cell behaviors

The cell is like our financial system: Even if you have a diagram of all the complex interactions going on, you still cannot intuit how the whole system will react when perturbed. Indeed, the cell...
Apr, 01, 2010
Putting Technology In Its Place
When you step on the gas pedal, you expect acceleration (and lots of it). Stomp on the brake to come safely to a stop in the rain. Finger the power-assisted steering wheel and the car obeys. Make a...
Oct, 01, 2009
More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

To the casual observer, stem cells offer the almost magical promise of—Voila!—turning into exactly the kind of cell needed to repair an injured spinal cord or replace a damaged organ. And...
stem cell
Apr, 01, 2010
The Physiome: A Mission Imperative

To understand biology—and provide appropriate medical care—scientists need to understand interactions across multiple scales. Hence the Physiome.

This is the reality of human biology: events span a 109 range in lengthscale (molecular to organismal) and a 1014 range in timescale (molecular movement to years). To understand this biology—...
Jun, 01, 2010
Matters of Time: Tick Tock Go the Simulations

Computing using time steps -- a necessary approximation

Time flows like a continuous, steady river. And it moves forward—never back. These facts create inherent challenges for computer simulations of biological molecules in motion.   It would...
molecular dynamics, timesteps
Jun, 19, 2013
SimVascular User Profile: Jay Humphrey, PhD

Jay Humphrey at Texas A&M collaborates with Simbios on a fluid/solid/growth model of the cardiovascular system.

from http://biomedicalcomputationreview.org/content/simbios-bringing-biomedical-simulation-your-fingertips   A new model of arteries that simultaneously simulates fluid, solid, and growth...
Oct, 01, 2009
Imaging Collections: How They're Stacking Up

As barriers to massive imaging collections fall, researchers can look at human systems in their entirety rather than in pieces

In the beginning there was the Visible Human. It broke new ground by gathering some 2,000 serial images from a death row inmate’s cadaver, and was the first time researchers had sectioned a...
Jul, 01, 2007
  • ‹‹
  • 2 of 21
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe