Home
  • About
  • Archive
  • Contact
  • Subscribe
Simulating Populations with Complex Diseases
Diabetes, breast cancer, multiple sclerosis, Alzheimer’s disease. All are associated with several genes’ alleles interacting in complex ways with one another and the environment. Now,...
Jul, 01, 2007
Spit Diagnostics

The Salivary Proteome Knowledge Base

If spit could talk, it might tell us whether we’re sick or healthy.   According to David Wong, DMD, DMSc—professor and associate dean of research at the School of Dentistry at the...
Jun, 01, 2005
A Digital Human Could Advance Medicine

The Virtual Physiological Human (VPH) would encompass all the knowledge we’ve gathered, from genetic interactions to systems biology, into one integrated digital package

Science and medicine have fractured the human body into pieces: the cardiovascular system, the immune system, the endocrine system. Now a European initiative seeks to put the jigsaw puzzle back...
Jan, 01, 2008
Simulating Membrane Transport
For a bacterium to admit certain large nutrients, a steady tug from inside might do the trick, according to computer simulations recently published in Biophysical Journal.   Bacterial membranes...
Oct, 01, 2007
Clinical Decision Support: Providing Quality Healthcare with Help from a Computer
In a classic cartoon, a physician offers a second opinion from his computer.  The patient looks horrified: How absurd to think that a computer could have better judgment than a human doctor! But...
Jan, 01, 2010
FOLLOW THE MONEY: Big Grants in Biomedical Computing

Several big-dollar initiatives received NIH funding in late 2010

In the current economic climate, every research dollar counts. Fortunately, when it comes to biomedical computing, not everyone has been left counting change. Several big-dollar initiatives received...
brain, immunity, network
Apr, 01, 2011
On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical Computing take off

WHY NATIONAL CENTERS? Four National Centers for Biomedical Computing were launched by the NIH in 2004 with $20 million in funding for each center over five years. The reason: We need to make...
Jun, 01, 2005
Bringing the Fruits of Computation to Bear on Human Health: It’s a Tough Job but the NIH Has to Do It
The National Institutes of Health are on a mission: To understand and tackle the problems of human health. To make that daunting problem approachable, 15 of the 20 institutes divvy up human health...
Oct, 05, 2012
Matters of Time: Tick Tock Go the Simulations

Computing using time steps -- a necessary approximation

Time flows like a continuous, steady river. And it moves forward—never back. These facts create inherent challenges for computer simulations of biological molecules in motion.   It would...
molecular dynamics, timesteps
Jun, 19, 2013
Untangling Integrative Analysis

How researchers are combining disparate data types and simulating systems that contain many different moving parts

13 years ago Markus Covert, PhD, read a New York Times article that changed his life.  The article quoted a prominent microbiologist who suggested that the ultimate test of one’s...
Feb, 16, 2013
  • ‹‹
  • 2 of 3
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe