Home
  • About
  • Archive
  • Contact
  • Subscribe
A Big Step Forward for OpenSim

OpenSim 2.0 promises greater opportunities for customization

With its initial release two years ago, OpenSim offered researchers a powerful open-source application for simulating movement. Simple enough to be used by high school students yet advanced enough to...
Jan, 01, 2010
Scientific Discovery Through Video Games

"Fold-It" players find best protein conformations to fight cancer

When it comes to folding proteins, even modern supercomputers don’t always get things exactly right. Enter FoldIt, an online video game that harnesses the human brain’s natural pattern-...
Jan, 01, 2010
Human Versus Machine: Biomedical expertise meets computer automation

Computers and human experts duke it out over who is better at diagnosing disease, interpreting images, or predicting protein structure

Dorothy Rosenthal tenses over her microscope, peering at the problematic nucleus on the Pap smear yet again. “It’s abnormal,” she decides, and then hesitates. “No, it’s...
Jul, 01, 2006
Flexible Molecular Computer Functions Inside a Cell
A newly created molecular computer works in human cells and offers the flexibility of a general-purpose circuit. The advance, described in Nature Biotechnology in May, brings closer the eventual...
Oct, 01, 2007
Error! – What Biomedical Computing Can Learn From Its Mistakes

How errors in data, software, and methodology can teach us how to do better

In 2006, a paper in Nature Medicine suggested a novel and potentially revolutionary method for predicting patient responses to cancer therapies using gene signatures. The finding piqued the interest...
publication, reproducible research, statistics, validation
Sep, 01, 2011
Editor's Picks
One of our goals at Biomedical Computation Review is to create a sense of kinship among members of this very diverse community of researchers. This column provides reviews of some of the latest and...
Jun, 01, 2005
Swine Dynamics
The antiviral drugs Tamiflu and Relenza target a key flu protein—neuraminidase—preventing it from doing its job of releasing virus particles from infected cells into the body. The type of...
Jul, 01, 2009
Making DNA Smile

Researcher coaxes long strands of DNA into predetermined geometric shapes

Designing nanostructures of DNA just got easier. Paul Rothemund, PhD, a senior research fellow at Caltech has found a way to coax a long strand of DNA into a predetermined geometric shape by mixing...
Jul, 01, 2006
Computing Better Enzymes: Optimizing Directed Evolution

Using computation, researchers narrow the search space for directed evolution; guide mutagenesis; and create de novo enzymes

Enzymes are among nature’s crowning achievements: they accelerate chemical reactions, making life possible. People have co-opted natural enzymes for industrial use for thousands of years (think...
Feb, 19, 2013
Decoding Promotion
Despite their identical genomes, cells in the body develop distinct personalities—become neurons or liver cells, for instance—due to differences in gene expression. The mechanism that...
Apr, 01, 2009
  • ‹‹
  • 2 of 16
  • ››

SHARE THIS

  • Tweet
  • Email

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe