Home
  • About
  • Archive
  • Contact
  • Subscribe
How Upper Level Ontologies Deal With Functions and Other Realizable Entities
Before categorizing things, you have to decide on the categories.  For material “things” (e.g., molecules, organs, etc.) or entities, the task is relatively straightforward. But...
Oct, 01, 2010
Canonicity and Disease Ontologies
Ontologies provide biomedical researchers with an inventory of the universal features of reality across organisms, biomedical disciplines, and levels of granularity. In capturing what is universal,...
Jul, 01, 2009
An Uphill Challenge
RunBot, already the world’s fastest bipedal robot, has now also learned to keep its balance when walking up ramps. “We have achieved a synthesis of different functionalities, between...
Oct, 01, 2007
Editor's Picks
One of our goals at Biomedical Computation Review is to create a sense of kinship among members of this very diverse community of researchers. This column provides reviews of some of the latest and...
Jun, 01, 2005
A Finer Fat Model

Models of healthy and diseased lipid profiles could prove valuable diagnostically.

When it comes to heart disease risk, “bad” and “good” cholesterol—also known as low density lipoproteins [LDL] and high density lipoproteins [HDL]—do not tell...
Oct, 01, 2008
Multiscale Modeling in Biomedical Research

New approaches extend multiscale models to represent cellular mesoscales and bridge from molecular to cellular models

In an era of increasingly comprehensive molecular characterizations of living systems, computation has emerged as a key technology to facilitate integrative understanding of biological mechanisms....
Feb, 19, 2013
Enhanced Function Recognition in Protein Trajectories over Space and Time

Simulating molecular movement gives a more accurate view of binding sites.

If a picture’s worth a thousand words, then a motion picture, such as that provided by molecular dynamics (MD) simulations, must contain a wealth of information.  It’s this potential...
Oct, 01, 2008
More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

To the casual observer, stem cells offer the almost magical promise of—Voila!—turning into exactly the kind of cell needed to repair an injured spinal cord or replace a damaged organ. And...
stem cell
Apr, 01, 2010
Flexible Molecular Computer Functions Inside a Cell
A newly created molecular computer works in human cells and offers the flexibility of a general-purpose circuit. The advance, described in Nature Biotechnology in May, brings closer the eventual...
Oct, 01, 2007
OpenSim User Profile: Katherine Holzbaur, PhD

Katherine Holzbaur of Wake Forest University Medical School simulates the biomechanics of the upper limb.

from http://biomedicalcomputationreview.org/content/simbios-bringing-biomedical-simulation-your-fingertips   Katherine Holzbaur, PhD, assistant professor of biomedical engineering at Wake Forest...
Oct, 01, 2009
  • ‹‹
  • 2 of 16
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

Biomedical Computation Space

Defining biomedical computation

06/01/05 by David Paik, PhD, Executive Editor

The Last Word

06/01/05 by Katharine Miller

Welcome Back

About this issue of Biomedical Computation...

09/01/05 by David Paik, PhD, Executive Editor

Sparks of Hope for a More Open Approach to Scientific Research and Publishing

Transparent peer review, replication studies,...

09/01/11 by Joy P. Ku, PhD, Director of Simbios

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe