Home
  • About
  • Archive
  • Contact
  • Subscribe
Profiles in Computer Science Courage Part I: Reflections on the rewards of plunging into biomedicine

Interviews with Leonidas Guibas, Ron Shamir, Michael Black, David Haussler, Daphne Koller, Erin Halperin, Gene Myers, Paul Groth and Bruce Donald

To a computer scientist, the fields of biology and medicine can seem like the vast Pacific Ocean, says Leonidas Guibas, PhD, professor of computer science at Stanford University. “You go to the...
Careers, computer science
Apr, 01, 2011
Update on Biomedical Computation at NIH

Helping newcomers understand the lay of the land

As a program manager in biomedical computing and computational biology at the National Institutes of Health, I field many questions, particularly from new investigators. They ask questions like:...
Apr, 01, 2010
Normal Mode Analysis: Calculation of the Natural Motions of Proteins
Advances in computational power and algorithms have led to longer and more accurate molecular dynamics simulations of protein folding. But these approaches, because they are computationally intensive...
Jun, 06, 2012
An Unfolding Story

A model of chromatin explores how it folds and unfolds

To fit an organism’s DNA into a single cell, it has to be tightly compacted, first wound around proteins to form chromatin fibers, then further coiled into chromosomes. Computer simulations by...
Sep, 01, 2005
DNA Shows Surprising Flexibility

Where simulation and theory converge

For decades, scientists have believed that DNA of short lengths (150 base pairs or fewer) behaves as a relatively stiff rod—able to quiver a bit, but rarely forming a circle or tight angle...
Apr, 01, 2007
Dimension Reduction and Manifold Learning: When Less Is More
The Fall 2005 “Under the Hood” column discussed the curse of dimensionality—too many numerical components for each data point—and the curse of dataset sparsity—too few...
Oct, 01, 2010
Visualization in Space and Time: Seamless Pipelines Now Available

Advances in visualization changing work flows for understanding molecular dynamics, tracking cell movements, and designing interventional procedures

The pathway from raw data to valuable visualization of molecules, cells or organs being simulated over time involves several potentially painstaking steps. Typically, researchers must generate a set...
atrial fibrillation, developmental biology, ePMV, patient-specific, visualization
Sep, 02, 2011
Reverse Engineering the Brain
For a century, neuroscientists have dissected, traced, eavesdropped on, and are now compiling a seemingly endless cast of players in the nervous system. As we keep gathering more and more molecular...
neuron, reverse engineer
Apr, 01, 2009
Life in Motion: Simulation from Particles to People

Computational simulations of life in motion at every scale—molecular, cellular, tissue-level, and whole organism—are boosting our understanding of the role mechanics plays in controlling life.

From atoms and molecules to insects, dinosaurs, and humans, computational researchers are finding that much of life can be understood in mechanical terms. Indeed, the machines of life are...
Jan, 01, 2008
  • ‹‹
  • 2 of 2
  •  

SHARE THIS

  • Tweet
  • Email

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe