Home
  • About
  • Archive
  • Contact
  • Subscribe
Where Tuberculosis Meets Computation: 10 Points of Intersection

Computation offers a window into a disease often described as a black box

The growing threats of multi-drug resistant (MDR) and extensively drug resistant (XDR) tuberculosis (TB) are spurring worldwide interest in faster and more innovative research approaches, such as...
Jun, 06, 2012
Life in Motion: Simulation from Particles to People

Computational simulations of life in motion at every scale—molecular, cellular, tissue-level, and whole organism—are boosting our understanding of the role mechanics plays in controlling life.

From atoms and molecules to insects, dinosaurs, and humans, computational researchers are finding that much of life can be understood in mechanical terms. Indeed, the machines of life are...
Jan, 01, 2008
Flowing through the Interactome
High-throughput experimental methods are widely used today to identify genes and proteins involved in a particular process, but not all molecules in a pathway can be identified in this manner. To...
Jul, 01, 2009
Normal Mode Analysis: Calculation of the Natural Motions of Proteins
Advances in computational power and algorithms have led to longer and more accurate molecular dynamics simulations of protein folding. But these approaches, because they are computationally intensive...
Jun, 06, 2012
Resolution Limits of Optical Microscopy and the Mind

How precise an image can fluorescence microscopy provide?

As modern optics and cell biology have flourished in recent years, they’ve each driven innovation in the other. Yet commonly employed imaging techniques, such as fluorescence microscopy, have...
fluorescence, microscopy
Sep, 01, 2011
The Microbiome: Dealing with the Data Deluge

Bioinformatics and computational biology enable microbiome research

This past June, 200 members of the NIH-funded Human Microbiome Project (HMP) Consortium published a slew of papers offering fresh insights into the role microbial communities play in the human body...
JGI, microbiome
Oct, 22, 2012
Computing the Ravages of Time: Using Algorithms To Tackle Alzheimer’s Disease

Biomarker research, genetics, and imaging are all coming into play

In 1906, at a small medical meeting in Tübingen, Germany, physician Alois Alzheimer gave a now-famous presentation about a puzzling patient. At age 51, Auguste D.’s memory was failing...
Oct, 01, 2007
Computation Competitions Take Off!

Contests involving algorithms for protein structure prediction, natural language processing, and computer-aided disease detection are giving researchers a jolt of adrenalin and moving these fields forward

From all parts of the computational spectrum, researchers are duking it out: They are throwing their algorithms into the ring to see which one will out-perform all others on a particular task....
Jul, 01, 2006
Jackson Pollock’s Protein Interaction Communities

Plot shows how functional communities in yeast protein interaction networks change in size and nature at different levels of resolution

Splashes of bold color seem to drip down the page, bringing to mind the paintings of Jackson Pollock. Spurred by the beauty of the image she had created, Anna Lewis,* a graduate student studying...
protein interaction networks
Apr, 01, 2011
Side Effects in silico
Many new drugs carry a risk that they will cause more problems than they cure. That’s because a drug intended to bind one protein might also bind others. In an effort to address that problem,...
Apr, 01, 2008
  • ‹‹
  • 2 of 21
  • ››

SHARE THIS

  • Tweet
  • Email

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe