Home
  • About
  • Archive
  • Contact
  • Subscribe
Art That's A BLAST

Ecce Homology is a physically interactive new-media work that visualizes genetic data as calligraphic forms.

A group of artists and scientists has created an interactive artwork using BLAST (Basic Local Alignment Search Tool), one of the foundational algorithms for comparative genomics. Normally, the BLAST...
Sep, 01, 2005
Personalized Cancer Treatment: Advancing Gene Expression Signatures
Refining the practical applications of the science in Personalized Cancer Treatment: Seeking Cures Through Computation   Gene expression signatures that stratify patients into likely and...
cancer, gene expression signatures
Jan, 02, 2012
Putting Heads Together

Upcoming biocomputing conferences

The 6th Annual International Conference on Computational Systems Bioinformatics (CSB2007) coordinated by the Life Sciences Society. WHAT: This conference is designed for any scientist interested in...
Jul, 01, 2007
On Simulating Growth and Form

Simulations can teach us how young bodies and faces develop; how an artery compensates for decades of fatty plaque deposits by growing and thickening its walls; how tissue engineers can best coax endothelial cells to develop into organized sheets of skin for burn patients; and how cancerous tumors invade neighboring tissue.

For better or for worse, and on many levels, our tissues never stop growing and changing. While developing from childhood to old age, we grow not only bone, cartilage, fat, muscle and skin, but also...
Apr, 01, 2008
Point/Counterpoint: Should there be a separate funding mechanism for the development and maintenance of software and infrastructure?
  POINT/   NO:  Grant applications for the development and maintenance of software and infrastructure should compete with basic research applications. Biomedicine has a strong...
Jul, 01, 2009
Profiles in Computer Science Courage Part I: Reflections on the rewards of plunging into biomedicine

Interviews with Leonidas Guibas, Ron Shamir, Michael Black, David Haussler, Daphne Koller, Erin Halperin, Gene Myers, Paul Groth and Bruce Donald

To a computer scientist, the fields of biology and medicine can seem like the vast Pacific Ocean, says Leonidas Guibas, PhD, professor of computer science at Stanford University. “You go to the...
Careers, computer science
Apr, 01, 2011
Tapping the Brain: Decoding fMRI

How researchers are predicting specific thoughts from brain activity

Revealing the brain’s hidden stash of pictures, thoughts, and plans has, until recently, been the work of parlor magicians. Yet within the last decade, neuroscientists have gained powerful...
fMRI, memories, multivoxel pattern analysis, MVPA, neuroscience
Jan, 02, 2012
Reverse Engineering the Brain
For a century, neuroscientists have dissected, traced, eavesdropped on, and are now compiling a seemingly endless cast of players in the nervous system. As we keep gathering more and more molecular...
neuron, reverse engineer
Apr, 01, 2009
An Uphill Challenge
RunBot, already the world’s fastest bipedal robot, has now also learned to keep its balance when walking up ramps. “We have achieved a synthesis of different functionalities, between...
Oct, 01, 2007
Bringing Supercomputers to Life (Sciences)

Supercomputers open up new horizons, offering the possibility of discovering new ways to understand life’s complexity

Their very names sound like dinosaurs. Teracomputers. Petacomputers. These are, in fact, the dinosaurs of the digital world—monstrous, hungry and powerful. But unlike the extinct...
Oct, 01, 2006
  • ‹‹
  • 2 of 21
  • ››

SHARE THIS

  • Tweet
  • Email

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe