Home
  • About
  • Archive
  • Contact
  • Subscribe
Busting Assumptions about Rainbows and 3-D Images

2-D visualizations by HemoVis software leads to faster, more accurate diagnoses

To diagnose heart disease noninvasively, scientists combine 3-D visualizations of the heart and blood vessels (reconstructed from CT scans) with computer simulations of blood flow. Typically, a...
blood flow simulation, HemoVis, visualization
Jan, 02, 2012
Synchronizing Cells

Synthetic biologists explain cell behaviors while desinging new ones

Without synchronized clocks—whether embedded in our body’s cells or programmed into our desktop computers—any kind of coordinated activity is impossible. So after synthetic...
Apr, 01, 2010
Building RNA 3-D Structure
The structure of RNA is an important key to its function—including its role in disease. However, the structure of most RNAs is unknown because their extreme flexibility and high charge...
Mar, 01, 2009
Journey to the NIH: Insights and Inspirations from the 2012 NCBC Showcase

Postdocs get a glance at the entire field and their first inside view of NIH grant-making

If he were a graduate student now, Francis Collins would be studying computational biology. That’s what the Director of the National Institutes of Health (NIH) told a rapt audience at the...
Feb, 19, 2013
Capturing Mitosis Genes in Action
During the one-hour drama that is human cell division, many genes enter and exit the stage. Until now, researchers did not know the identities of many of these actors, nor understand their various...
Apr, 01, 2011
Misconceptions of Time

Getting the molecular dynamics car out of the garage

For those who are not practitioners of dynamical simulation methods, such as molecular dynamics (MD), one of the biggest misconceptions relates to time. Specifically, the mismatch between the...
molecular dynamics simulations, time
Jun, 19, 2013
Art That's A BLAST

Ecce Homology is a physically interactive new-media work that visualizes genetic data as calligraphic forms.

A group of artists and scientists has created an interactive artwork using BLAST (Basic Local Alignment Search Tool), one of the foundational algorithms for comparative genomics. Normally, the BLAST...
Sep, 01, 2005
Prototype to Release: Software Engineering for Scientific Software

Set objectives and follow through

Having engineered several scientific software applications for public consumption, the authors know from experience that the process offers unique challenges. Typically, the algorithms being...
Oct, 22, 2012
Chess, Thinking, Seeing, Jaggies and Chess... Again

I'd like to pay homage to James Burke and his inspiring PBS show Connections by taking you on my own short journey of connected ideas.

  The timeless game of chess has long been a grand challenge for artificial intelligence, with the number of possible games being much greater than the number of atoms in the universe. Baron...
Jan, 01, 2006
In the (Protein) Loop

LoopTK samples and visualizes many conformations of a protein loop to better understand loop movement

In the gaps between the tight coils and flattened sheets that comprise most protein structures, flexible loops wave and bend. When crystallized, these loops can appear fuzzy in an electron density...
Jul, 01, 2007
  • ‹‹
  • 2 of 22
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe