Home
  • About
  • Archive
  • Contact
  • Subscribe
Tools to Understand the Federal Research Portfolio: From Ontologies to Topic Mapping

Computation helps evaluate the nature of the NIH research portfolio in ways that were previously very difficult.

What biomedical research does the federal government fund? How is it allocated across important diseases? Has that changed over time? Answering these questions at any level of detail is tougher than...
Jun, 08, 2012
Simbios: Bringing Biomedical Simulation to Your Fingertips

How Simbios' state-of-the-art software tools are contributing to high-impact biomedical research

Simbios began with a simple idea: that physics-based simulation of biological structures at all scales could benefit from a unified tool-building effort.   At the same time, the thinking went,...
Oct, 01, 2009
Ramping Up to Multiscale: Taking Biomedical Modeling to a New Level

Multi-scale modeling is now at what might be called its gestational stage

For centuries, mathematics has been an indispensable ally of the physical sciences and engineering. Planes fly and telephones work because engineers know how to simplify physical systems into...
Apr, 01, 2006
Human Versus Machine: Biomedical expertise meets computer automation

Computers and human experts duke it out over who is better at diagnosing disease, interpreting images, or predicting protein structure

Dorothy Rosenthal tenses over her microscope, peering at the problematic nucleus on the Pap smear yet again. “It’s abnormal,” she decides, and then hesitates. “No, it’s...
Jul, 01, 2006
Meet the Skeptics: Why Some Doubt Biomedical Models - and What it Takes to Win Them Over

Disentangling the different types of skeptics and what modelers can learn from each.

What are the telltale signs of a modeling talk at a biology conference? Just look for the sighs, shifting, and eye-rolling in the audience, says Donald C. Bolser, PhD, professor of physiological...
Jun, 05, 2012
The Fate of Inhaled Particles
New computational model simulates how particles in the air get deposited in the lungs during breathing Depending on their nature, microscopic particles suspended in air—called aerosols—...
Apr, 01, 2009
The Eyes Have It: Biomechanical Models Explore Disorders of the Eye

Biomechanical models contribute to a better understanding of both the normal and the diseased eye.

Squint, and you can almost  make out that bird soaring over the horizon. But determining whether it’s a hawk or a raven will be nearly impossible for someone with myopia, also known as...
Feb, 19, 2013
Computer Vision that Mimics Human Vision

Computer vision program rivals the human ability to rapidly recognize objects in a complex picture

Our brains can recognize most of the things we pass on an evening stroll: Cars, buildings, trees, and people all register even at a great distance or from an odd angle. Now, a new computer vision...
Jul, 01, 2007
Modeling Sperm: The Finer Points of Fertilization

Navigating the oviduct and other mysteries

The essential elements of human fertilization are clear: sperm swim through the uterus, travel up the fallopian tube, and fertilize an egg. Not as well understood are the the nitty-gritty details of...
agent-based models, fertilization, sperm
Jun, 19, 2013
A Multi-scale Model of Drug Delivery Through the Skin
Medicinal patches applied to the skin are an attractive route for drug delivery since they can release medicine slowly into the bloodstream and avoid being metabolized by the digestive system. Yet...
Oct, 01, 2009
  • ‹‹
  • 3 of 21
  • ››

SHARE THIS

  • Tweet
  • Email

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe