Home
  • About
  • Archive
  • Contact
  • Subscribe
3D Radiology—Who Knew It Could Look So Good

3D images help physicians design appropriate interventions.

Images of realistic and colorful 3D human body parts line the hall outside the lab. Blood and muscle look like blood and muscle; bone looks like bone. You almost expect to find human cadavers being...
cardiovascular, radiology, stent, visualization
Sep, 01, 2011
Human Versus Machine: Biomedical expertise meets computer automation

Computers and human experts duke it out over who is better at diagnosing disease, interpreting images, or predicting protein structure

Dorothy Rosenthal tenses over her microscope, peering at the problematic nucleus on the Pap smear yet again. “It’s abnormal,” she decides, and then hesitates. “No, it’s...
Jul, 01, 2006
The Epigenome: A New View Into the Book of Life

There is growing recognition that epigenetics may be just as important as genetics in human health and disease.

In the early 19th century, Jean-Baptiste Lamarck explained evolution as the inheritance of acquired traits; he believed that changes due to behaviors and exposures in one generation could be passed...
Jun, 01, 2010
Breathing Life Into Paper
The edict that academics must “publish or perish” serves not merely to advance careers, but also to stress the importance of transmitting knowledge from scientist to scientist and...
Jan, 01, 2006
Dogs, Doses, and Devices: The FDA's Ambitious Plans for Computational Modeling

Computational modeling can help fill gaps in how we develop and review new drugs and devices

What role does computational modeling play at the United States Food and Drug Administration (FDA)?  If you ask Paul Watkins, MD, director of the Hamner—University of North Carolina...
devices, drug discovery, FDA, modeling
Sep, 01, 2011
NCBCs Take Stock and Look Forward: Fruitful Centers Face Sunset

From hardened software to scientific productivity, the NCBCs have changed the landscape for biomedical computing.  What will happen when their funding expires?

It has been eight years since the National Institutes of Health (NIH) funded the first National Centers for Biomedical Computing (NCBCs). With two or three years remaining in the program (...
ccb, i2b2, Magnet, na-mic, ncbo, NCIBI, Simbios
Oct, 19, 2012
LIFE IS CROWDED: Modeling the Cell's Interior

Modelers are using recent gains in computational power to consider the complex interactions of hundreds or thousands of macromolecules at once--a necessary first step toward whole cell simulation

Molecules in cells behave like people in crowded subway cars. Because they can barely budge or stretch out without bumping into a neighbor, they move more slowly, smush themselves into more compact...
crowding, macromolecule, molecular dynamics
Apr, 01, 2011
Pore Picture Construction

By computationally combining incomplete imaging information with bits and pieces of structural data from all sorts of different experiments, researchers have worked out the protein-by-protein structure of an important cellular assembly called the nuclear pore complex.

Like puzzles? Here’s a tough one: Try figuring out the construction of a nearly 500-piece machine without blueprints or a complete picture. Biologists have now accomplished just such a feat,...
Apr, 01, 2008
De Novo Protein Design: Designing Novel Proteins that Interact

Working in silico, researchers hone in on candidate proteins worthy of laboratory work

By stringing together amino acids in a prescribed sequence that then folds into a defined structure, nature designs proteins to perform specific functions. Nowadays, computational researchers are...
protein design
Sep, 01, 2011
Benchmarks for Musculotendon Models

Assuring accuracy and efficiency

In simulations of human activities such as running, hundreds of individual musculotendon models turn on and off to swing the arms and legs. Naturally, these simulations can only be as accurate and...
muscle models, tendon models
Jun, 19, 2013
  • ‹‹
  • 3 of 26
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe