Home
  • About
  • Archive
  • Contact
  • Subscribe
Finding the Best Molecule for the Job

Computer modeling may help narrow the molecular landscape to the best drug prospects

Every pharmaceutical company wants to find the next blockbuster drug. Yet finding molecules with a complete set of desired properties is tricky because of the astronomical number of medium-sized...
Jul, 01, 2006
A Fast Lane Through the Stomach

2-D computer simulation reveals unexpected pathway

What goes into the stomach must come out, but perhaps not in the same order in which it entered, as gastroenterologists have long assumed. A two-dimensional computer model of human stomach digestion...
Jan, 01, 2007
Evolution and HIV: Using Computational Phylogenetics to Close In On a Killer

The study of HIV evolution is not only critical to fighting the virus; it has also driven advances in the computational tools used to study evolution in general.

When Darwin published On the Origin of Species in 1859, it would be decades before HIV would jump from monkeys to humans and set off a devastating worldwide pandemic. But evolution is at the heart of...
Jul, 01, 2009
Trojan Peptide

How Tat crosses the lipid bilayer--with help from the bilayer.

A powerful snippet of protein called the Tat peptide ferries itself across cell membranes dragging just about anything it’s attached to along with it. How it accomplishes this feat has been a...
Jul, 01, 2008
NewsBytes: Winter 2005-2006
T-Rex in the Slow Lane by Kristen Cobb   Tyrannosaurus rex is often pictured baring its teeth, crouching, and running swiftly after its prey, but these images are largely based on human fancy...
Jan, 01, 2006
The Fate of Inhaled Particles
New computational model simulates how particles in the air get deposited in the lungs during breathing Depending on their nature, microscopic particles suspended in air—called aerosols—...
Apr, 01, 2009
A Digital Human Could Advance Medicine

The Virtual Physiological Human (VPH) would encompass all the knowledge we’ve gathered, from genetic interactions to systems biology, into one integrated digital package

Science and medicine have fractured the human body into pieces: the cardiovascular system, the immune system, the endocrine system. Now a European initiative seeks to put the jigsaw puzzle back...
Jan, 01, 2008
Reverse Engineering the Brain
For a century, neuroscientists have dissected, traced, eavesdropped on, and are now compiling a seemingly endless cast of players in the nervous system. As we keep gathering more and more molecular...
neuron, reverse engineer
Apr, 01, 2009
Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

“We have recommendations for you,” announces the website Amazon.com each time a customer signs in.   This mega-retailer analyzes billions of customers’ purchases—nearly $...
Jan, 02, 2012
Bringing Supercomputers to Life (Sciences)

Supercomputers open up new horizons, offering the possibility of discovering new ways to understand life’s complexity

Their very names sound like dinosaurs. Teracomputers. Petacomputers. These are, in fact, the dinosaurs of the digital world—monstrous, hungry and powerful. But unlike the extinct...
Oct, 01, 2006
  • ‹‹
  • 3 of 7
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

Profiles in Computer Science Courage Part I: Reflections on the rewards of plunging into biomedicine

Interviews with Leonidas Guibas, Ron Shamir,...

04/01/11 by By Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe