Home
  • About
  • Archive
  • Contact
  • Subscribe
Infrastructure and Workforce Needs in Biomedical Informatics and Computational Biology
In science, there is a need to balance research in domain sciences and the infrastructure to support that research. Basic research mediated through peer review is understood to produce useful...
Jan, 01, 2007
Democratizing Integrative Biology

The importance of developing and deploying tools for the quantitative clinician scientist

The word Om (or Aum) has many meanings in ancient Hindu philosophy, one of which is “that which contains all other sounds.” The meaning has relevance to the now commonly used suffix...
Jun, 01, 2010
Update on Biomedical Computation at NIH

Helping newcomers understand the lay of the land

As a program manager in biomedical computing and computational biology at the National Institutes of Health, I field many questions, particularly from new investigators. They ask questions like:...
Apr, 01, 2010
A Vision of Computational Anatomy
Today, the knowledge, experience and memory of clinicians or scientists function as the exclusive resource for distinguishing normal from abnormal brain images; identifying signatures or biomarkers...
Jul, 01, 2009
Biomedical Computation Review: The Simbios 5th Anniversary Issue
Dear Reader,   In this eighteenth issue of Biomedical Computation Review (BCR), we bring you a special edition devoted to the work of the magazine’s publisher: the Simbios National Center...
Oct, 01, 2009
Identifying and Overcoming Skepticism about Biomedical Computing

Modelers should take the lead.

Many collaborators 1        with whom modelers2 work have little or  no training in modeling3 and so it is natural that they may be cautious,...
Jun, 05, 2012
Fulfilling the Promise of the NIH Roadmap Through National Engagement by the National Centers for Biomedical Computing (NCBC) and the CTSA Informatics
For major team-based Roadmap initiatives, National Institutes of Health (NIH) officials expect grantees to look beyond the focus of their individual projects to build bridges not only among funded...
Oct, 01, 2008
Taking the leap: from single genes to the molecular choreography of the cell
The Human Genome Project has spurred extraordinary developments in our ability to characterize cellular systems in high-throughput fashion. Polymorphism, methylation, gene expression, and proteomics...
Apr, 01, 2008
Error! – What Biomedical Computing Can Learn From Its Mistakes

How errors in data, software, and methodology can teach us how to do better

In 2006, a paper in Nature Medicine suggested a novel and potentially revolutionary method for predicting patient responses to cancer therapies using gene signatures. The finding piqued the interest...
publication, reproducible research, statistics, validation
Sep, 01, 2011
Bringing Supercomputers to Life (Sciences)

Supercomputers open up new horizons, offering the possibility of discovering new ways to understand life’s complexity

Their very names sound like dinosaurs. Teracomputers. Petacomputers. These are, in fact, the dinosaurs of the digital world—monstrous, hungry and powerful. But unlike the extinct...
Oct, 01, 2006
  • ‹‹
  • 3 of 5
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

Profiles in Computer Science Courage Part I: Reflections on the rewards of plunging into biomedicine

Interviews with Leonidas Guibas, Ron Shamir,...

04/01/11 by By Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe