Home
  • About
  • Archive
  • Contact
  • Subscribe
Hot Bodies a Lure for Unseen Specks

Computing airflow dynamics

We can’t see them, but tiny particles—dust, pollen, microbes, and the like—swirl around us in complicated, turbulent pathways. New numerical simulations suggest that, at least in...
Jun, 01, 2010
Accurate Molecular Dynamics Force Fields for the Scientific Masses

AMOEBA's polarizable force field now integrated with OpenMM

Many have long hoped that molecular dynamics calculations—the computation of how molecules move and interact with other molecules—would revolutionize the world of synthetic chemistry,...
AMOEBA, force field, OpenMM, polarizable force field
Sep, 01, 2011
Teaching Biology and Physics Together
While science educators actively debate the relative merits of teaching natural science in an integrated fashion, some authors are writing texts that will make it happen. Philip Nelson’s book,...
Jun, 01, 2005
Cancer Proteins Show Off Their Networking Skills

Cancer proteins highly interactive

New research suggests that cancer proteins, like influential people, have the most connections. These results, from an extensive study of how human proteins interact with one another, could help...
Jan, 01, 2007
Update on Biomedical Computation at NIH

Helping newcomers understand the lay of the land

As a program manager in biomedical computing and computational biology at the National Institutes of Health, I field many questions, particularly from new investigators. They ask questions like:...
Apr, 01, 2010
Multiscale Modeling in Biomedical Research

New approaches extend multiscale models to represent cellular mesoscales and bridge from molecular to cellular models

In an era of increasingly comprehensive molecular characterizations of living systems, computation has emerged as a key technology to facilitate integrative understanding of biological mechanisms....
Feb, 19, 2013
Aquaporin Simulations De-Bunk Gas Exchange Assumptions
Biologists have long taken gas exchange for granted, assuming that gases simply seep through the cell’s lipid membrane. Since 1998, however, evidence has been building that gases might also be...
Jul, 01, 2007
Swine Dynamics
The antiviral drugs Tamiflu and Relenza target a key flu protein—neuraminidase—preventing it from doing its job of releasing virus particles from infected cells into the body. The type of...
Jul, 01, 2009
Now Available: User-Friendly RNA Dynamics Applications
Now, with just a few mouse clicks, anyone with a computer and an Internet connection can create graphic images of RNA molecules (using ToRNADo) or generate the ion environments that surround these...
Jan, 01, 2007
Clustering Without Limits

Affinity propagation clusters lots of different kinds of data better and faster than other methods

Starting in preschool we all learn how to get organized. Typically, we start with pre-determined categories (dolls, trains, blocks); pre-set ideas about what belongs in each category (Barbie: doll;...
Jul, 01, 2007
  • ‹‹
  • 3 of 20
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe