Home
  • About
  • Archive
  • Contact
  • Subscribe
How DNA Goes A'Courtin'

Simplified model catches essential details of how DNA complements find their matches

Until now, scientists have known little about how complementary single strands of DNA court one another before binding to form the classical double helix. But now, molecular dynamics simulations have...
Jan, 01, 2010
Behind the Connectome Commotion

Exploring the current state of connectomics--in the midst of hype

Connectomics is having a moment. Following on the heels of genomics, proteomics, transcriptomics, metabolomics, and microbiomics, the latest “omic” to seize the spotlight is generating...
brain, connectome
Jun, 20, 2013
The Function of DNA Form
According to a new computational analysis of DNA structure, variations in DNA shape—along the grooves of the double helix—may play an important role in defining how the genome works. The...
Jul, 01, 2009
Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

“We have recommendations for you,” announces the website Amazon.com each time a customer signs in.   This mega-retailer analyzes billions of customers’ purchases—nearly $...
Jan, 02, 2012
Simulated Metabolism -- A First Step Toward Simulated Cells

Having developed detailed and sophisticated models of both E. Coli and human metabolism, researchers can begin to build toward a whole cell model that will be useful for the study of human health and disease.

If biologists really understood the functioning of the genome, they could in principle recreate it in silico. Instead of a choreographed swirl of molecules inside a living cell, electrons...
Oct, 01, 2008
Resolution Limits of Optical Microscopy and the Mind

How precise an image can fluorescence microscopy provide?

As modern optics and cell biology have flourished in recent years, they’ve each driven innovation in the other. Yet commonly employed imaging techniques, such as fluorescence microscopy, have...
fluorescence, microscopy
Sep, 01, 2011
Zooming In on Blood Coagulation and Viscosity: Computation Takes On Blood Behavior

Simulations illuminate the inner workings of blood at multiple levels

Understanding blood flow and coagulation is crucial to treating blood disorders such as hemophilia and thrombosis, and to dealing with diseases such as AIDS, malaria, and diabetes that have...
Jun, 07, 2012
COMPUTATIONAL DRUG DESIGN: new Tricks for Old Drugs

Computation can speed up the time it takes to find new binding partners for old drugs

When cheap drugs are needed fast, researchers and drug companies are increasingly turning to an interesting short-cut: repurposing existing drugs for new uses. Because drugs exert multiple actions in...
docking, drug design, drug repurposing
Apr, 01, 2011
Twin Curses Plague Biomedical Data Analysis

How to deal with too many dimensions and too few samples.

Noninvasive experimental techniques, such as magnetic resonance (MR), infrared, Raman and fluorescence spectroscopy, and more recently, mass spectroscopy (proteomics) and microarrays (genomics) have...
Sep, 01, 2005
Ramping Up to Multiscale: Taking Biomedical Modeling to a New Level

Multi-scale modeling is now at what might be called its gestational stage

For centuries, mathematics has been an indispensable ally of the physical sciences and engineering. Planes fly and telephones work because engineers know how to simplify physical systems into...
Apr, 01, 2006
  • ‹‹
  • 3 of 8
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe