Home
  • About
  • Archive
  • Contact
  • Subscribe
Tools to Understand the Federal Research Portfolio: From Ontologies to Topic Mapping

Computation helps evaluate the nature of the NIH research portfolio in ways that were previously very difficult.

What biomedical research does the federal government fund? How is it allocated across important diseases? Has that changed over time? Answering these questions at any level of detail is tougher than...
Jun, 08, 2012
FOLLOW THE MONEY: Big Grants in Biomedical Computing

Several big-dollar initiatives received NIH funding in late 2010

In the current economic climate, every research dollar counts. Fortunately, when it comes to biomedical computing, not everyone has been left counting change. Several big-dollar initiatives received...
brain, immunity, network
Apr, 01, 2011
Semantic Publishing and Scientific Journals
Keeping up with the literature is a challenge for all scientists. But some researchers are making it easier by enhancing the usability and understanding of an article’s contents in a variety of...
Jul, 01, 2009
Visualization in Space and Time: Seamless Pipelines Now Available

Advances in visualization changing work flows for understanding molecular dynamics, tracking cell movements, and designing interventional procedures

The pathway from raw data to valuable visualization of molecules, cells or organs being simulated over time involves several potentially painstaking steps. Typically, researchers must generate a set...
atrial fibrillation, developmental biology, ePMV, patient-specific, visualization
Sep, 02, 2011
Assembling The Aging Puzzle: Computation Helps Connect the Pieces

The complexity and variability of aging itself, along with the fragmented nature of researchers’ current understanding of aging, call for tools that can help scientists dig through mounds of data to find often subtle connections.

Jeanne Louise Calment of Arles, France rode a bicycle until she was 100 years old. When she gave up smoking at age 117, her doctor suspected it was out of pride. (She couldn’t see well enough...
Apr, 01, 2008
BIOSURVEILLANCE: From Text-mining to Freakidemiology

Researchers are expanding the types of data that can be used to predict infectious disease spread; developing novel ways to analyze that data; and trying to create systems that can help address public health problems today

American officials are seeking better ways to anticipate public health crises following ten years that have seen outbreaks of SARS, avian flu, H1N1, West Nile virus, cholera and, most recently,...
biosurveillance
Apr, 01, 2011
Virtual Genomic Scans with Real Data

HAP-SAMPLE takes real data as the template for simulations

Trying to find the genetic causes of a human disease requires lots of data. These days, researchers scan the genomes of people who do and don’t have a particular disease and look for genome-...
Jan, 01, 2008
Matters of Time: Tick Tock Go the Simulations

Computing using time steps -- a necessary approximation

Time flows like a continuous, steady river. And it moves forward—never back. These facts create inherent challenges for computer simulations of biological molecules in motion.   It would...
molecular dynamics, timesteps
Jun, 19, 2013
More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

To the casual observer, stem cells offer the almost magical promise of—Voila!—turning into exactly the kind of cell needed to repair an injured spinal cord or replace a damaged organ. And...
stem cell
Apr, 01, 2010
Simulated Metabolism -- A First Step Toward Simulated Cells

Having developed detailed and sophisticated models of both E. Coli and human metabolism, researchers can begin to build toward a whole cell model that will be useful for the study of human health and disease.

If biologists really understood the functioning of the genome, they could in principle recreate it in silico. Instead of a choreographed swirl of molecules inside a living cell, electrons...
Oct, 01, 2008
  • ‹‹
  • 3 of 17
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

Profiles in Computer Science Courage Part I: Reflections on the rewards of plunging into biomedicine

Interviews with Leonidas Guibas, Ron Shamir,...

04/01/11 by By Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe