Home
  • About
  • Archive
  • Contact
  • Subscribe
More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

To the casual observer, stem cells offer the almost magical promise of—Voila!—turning into exactly the kind of cell needed to repair an injured spinal cord or replace a damaged organ. And...
stem cell
Apr, 01, 2010
3D Angiogenesis Modeled

CompuCell-3D models behaviors rather than genes

Researchers have successfully simulated how growing blood vessels affect the sizes and shapes of tumors using a 3-D model based solely on how cells behave—without reference to intracellular...
Jan, 01, 2010
Follow the Money: Big Grants in Biomedical Computing

A virtual lab rat; simulated DNA; an artificial pancreas; & integrating mental health data

Several biomedical computing projects received multi-million dollar funding in the fall of 2011, including efforts to: simulate the cardiac physiology of the rat; build a state-of-the-art DNA...
diabetes, DNA, Orozco, pancreas
Jan, 02, 2012
Accurate Molecular Dynamics Force Fields for the Scientific Masses

AMOEBA's polarizable force field now integrated with OpenMM

Many have long hoped that molecular dynamics calculations—the computation of how molecules move and interact with other molecules—would revolutionize the world of synthetic chemistry,...
AMOEBA, force field, OpenMM, polarizable force field
Sep, 01, 2011
A Giant Leap for Open Source Simulation
Researchers can now create musculoskeletal models and simulations on an open source platform. In August, Simbios researchers released OpenSim 1.0. This freely available software can, in about 20...
Oct, 01, 2007
Protein Mechanica: Structural Modeling for the Experimentalist

Filling a gap in single molecule experimental work

Scientists sometimes find themselves up to their elbows in Styrofoam balls, pipe cleaners, and metal rods as they try to build models of the molecules they are studying. Now, they can exchange all...
Apr, 01, 2010
Teaching an Old Model New Tricks

Hidden Markov models estimate DNA loop kinetics

The hidden Markov model—a statistical model used for decades in fields as diverse as speech recognition and climatology—has received an update and a new application. Researchers at the...
Apr, 01, 2007
LIFE IS CROWDED: Modeling the Cell's Interior

Modelers are using recent gains in computational power to consider the complex interactions of hundreds or thousands of macromolecules at once--a necessary first step toward whole cell simulation

Molecules in cells behave like people in crowded subway cars. Because they can barely budge or stretch out without bumping into a neighbor, they move more slowly, smush themselves into more compact...
crowding, macromolecule, molecular dynamics
Apr, 01, 2011
Why We Swing

In the past, many biomechanical models of gait have omitted the arms. But as such models strive for greater realism, it has become more important to account for secondary movement by the arms.

Most people swing their arms when they walk. Indeed, like several characters in a classic Seinfeld episode, we’re surprised when they don’t. Yet we don’t really need to swing our...
Jul, 01, 2008
Misconceptions of Time

Getting the molecular dynamics car out of the garage

For those who are not practitioners of dynamical simulation methods, such as molecular dynamics (MD), one of the biggest misconceptions relates to time. Specifically, the mismatch between the...
molecular dynamics simulations, time
Jun, 19, 2013
  • ‹‹
  • 4 of 15
  • ››

SHARE THIS

  • Tweet
  • Email

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe