Home
  • About
  • Archive
  • Contact
  • Subscribe
Center of Mass Controls Balance

An elegant new model of balance control suggests the brain only cares about one thing: the body’s center of mass.

Bumped from behind, a person may step forward to avoid falling. Perhaps her arms fly out as well. To the untrained eye, these movements seem like the result of the brain controlling individual nerve...
Jan, 01, 2008
Extinct Sabercat Brought to Life

Using software designed for stress testing in engineering, researchers have modeled an American sabercat's skull in the highest resolution vertebrate animal model to date.

Wildlife biologists can watch a lion stalk its prey, but paleontologists must examine fossils to understand how the extinct saber-toothed cat hunted. Researchers now have modeled an American sabercat...
Jan, 01, 2008
Journey to the NIH: Insights and Inspirations from the 2012 NCBC Showcase

Postdocs get a glance at the entire field and their first inside view of NIH grant-making

If he were a graduate student now, Francis Collins would be studying computational biology. That’s what the Director of the National Institutes of Health (NIH) told a rapt audience at the...
Feb, 19, 2013
OpenSim User Profile: B.J. Fregly, PhD

University of Florida’s B.J. Fregly hopes to use OpenSim to simulate the knee.

from http://biomedicalcomputationreview.org/content/simbios-bringing-biomedical-simulation-your-fingertips   B.J. Fregly, PhD, associate professor of mechanical and aerospace engineering and of...
Oct, 01, 2009
OpenSim User Profile: Katherine Holzbaur, PhD

Katherine Holzbaur of Wake Forest University Medical School simulates the biomechanics of the upper limb.

from http://biomedicalcomputationreview.org/content/simbios-bringing-biomedical-simulation-your-fingertips   Katherine Holzbaur, PhD, assistant professor of biomedical engineering at Wake Forest...
Oct, 01, 2009
Follow the Money: Big Grants in Biomedical Computing

The clear winner: Big Data

 

Several biomedical computing projects received big money in the fall of 2012. If there’s one clear winner, it’s “Big Data”: three of the grants focus on building new...
Feb, 19, 2013
Simulating Cells in Context: Bringing Mechanics Into Play
Like humans, cells are affected by their physical environment, their neighbors, the context in which they exist. Much research has focused on the chemical signals that control cell behavior. But...
developmental biology
Sep, 01, 2011
On Simulating Growth and Form

Simulations can teach us how young bodies and faces develop; how an artery compensates for decades of fatty plaque deposits by growing and thickening its walls; how tissue engineers can best coax endothelial cells to develop into organized sheets of skin for burn patients; and how cancerous tumors invade neighboring tissue.

For better or for worse, and on many levels, our tissues never stop growing and changing. While developing from childhood to old age, we grow not only bone, cartilage, fat, muscle and skin, but also...
Apr, 01, 2008
An Uphill Challenge
RunBot, already the world’s fastest bipedal robot, has now also learned to keep its balance when walking up ramps. “We have achieved a synthesis of different functionalities, between...
Oct, 01, 2007
Trajectory Optimization and Physical Realism

How adding jet packs to characters' hands can help optimize animations

An animated human figure seeking the optimal path from point A to point B typically relies on computationally expensive hard constraints that force the trajectories to be physically realistic. But...
Jun, 20, 2013
  • ‹‹
  • 4 of 5
  • ››

SHARE THIS

  • Tweet
  • Email

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe