Home
  • About
  • Archive
  • Contact
  • Subscribe
“Sloppy” Systems Biology

Many systems models are strikingly vulnerable to even small changes in the variables

Systems biologists seek to model many complex biological interactions all at once. Typically, they input tens or even hundreds of variables to produce predic- tions about a system—for example,...
Jan, 01, 2008
Assembling The Aging Puzzle: Computation Helps Connect the Pieces

The complexity and variability of aging itself, along with the fragmented nature of researchers’ current understanding of aging, call for tools that can help scientists dig through mounds of data to find often subtle connections.

Jeanne Louise Calment of Arles, France rode a bicycle until she was 100 years old. When she gave up smoking at age 117, her doctor suspected it was out of pride. (She couldn’t see well enough...
Apr, 01, 2008
Animating Molecular Biology

Watching changes over time

These days, molecular biologists often gather data over a period of time—observing shifts as they occur inside groups of cells undergoing natural changes. The researchers then face the daunting...
Jun, 01, 2010
Integrative Cancer Biology Program is Born
The National Cancer Institute launched the Integrative Cancer Biology Program (ICBP) in October 2004, providing a total of $15 million to nine multidisciplinary centers. The goal: to use predictive...
cancer, integrative
Jun, 01, 2005
Scale-Free Networks in Contemporary Biology
A standard dictionary definition of a network is “an interconnected or interrelated chain, group, or system.” A cursory look at our surroundings shows that networks are ubiquitous. For...
Oct, 01, 2007
Democratizing Integrative Biology

The importance of developing and deploying tools for the quantitative clinician scientist

The word Om (or Aum) has many meanings in ancient Hindu philosophy, one of which is “that which contains all other sounds.” The meaning has relevance to the now commonly used suffix...
Jun, 01, 2010
Infrastructure and Workforce Needs in Biomedical Informatics and Computational Biology
In science, there is a need to balance research in domain sciences and the infrastructure to support that research. Basic research mediated through peer review is understood to produce useful...
Jan, 01, 2007
Computational Biology Catches the Flu: Modeling the bug, the host, the world
The flu virus is an evolutionary marvel. Teams of experts design an appropriate flu vaccine annually just to keep up with the microbe’s ability to evade the human immune system. Multiple...
Jul, 01, 2006
Computing the Ravages of Time: Using Algorithms To Tackle Alzheimer’s Disease

Biomarker research, genetics, and imaging are all coming into play

In 1906, at a small medical meeting in Tübingen, Germany, physician Alois Alzheimer gave a now-famous presentation about a puzzling patient. At age 51, Auguste D.’s memory was failing...
Oct, 01, 2007
The Epigenome: A New View Into the Book of Life

There is growing recognition that epigenetics may be just as important as genetics in human health and disease.

In the early 19th century, Jean-Baptiste Lamarck explained evolution as the inheritance of acquired traits; he believed that changes due to behaviors and exposures in one generation could be passed...
Jun, 01, 2010
  • ‹‹
  • 4 of 20
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe