Home
  • About
  • Archive
  • Contact
  • Subscribe
Leveraging Social Media For Biomedical Research

How social media sites are rapidly doing unique research on large cohorts

It has become commonplace for people to use social media to share their healthcare stories, seek a community of individuals with the same diseases, and learn about treatment options. All this...
ALS, clinical trials, GWAS, Parkinsons, social media
Jan, 02, 2012
Mining Biomedical Literature: Using Computers to Extract Knowledge Nuggets

Researchers are not simply retrieving and repackaging what is already known, but are also deriving new knowledge by discovering connections that were previously unnoticed.

Not long ago, reading biomedical literature involved hours in the library combing through rows of dusty periodicals—not to mention pocketfuls of change for the copy machine. Now, although the...
Jul, 01, 2008
Spit Diagnostics

The Salivary Proteome Knowledge Base

If spit could talk, it might tell us whether we’re sick or healthy.   According to David Wong, DMD, DMSc—professor and associate dean of research at the School of Dentistry at the...
Jun, 01, 2005
Democratizing Integrative Biology

The importance of developing and deploying tools for the quantitative clinician scientist

The word Om (or Aum) has many meanings in ancient Hindu philosophy, one of which is “that which contains all other sounds.” The meaning has relevance to the now commonly used suffix...
Jun, 01, 2010
COMPUTATIONAL DRUG DESIGN: new Tricks for Old Drugs

Computation can speed up the time it takes to find new binding partners for old drugs

When cheap drugs are needed fast, researchers and drug companies are increasingly turning to an interesting short-cut: repurposing existing drugs for new uses. Because drugs exert multiple actions in...
docking, drug design, drug repurposing
Apr, 01, 2011
Where Tuberculosis Meets Computation: 10 Points of Intersection

Computation offers a window into a disease often described as a black box

The growing threats of multi-drug resistant (MDR) and extensively drug resistant (XDR) tuberculosis (TB) are spurring worldwide interest in faster and more innovative research approaches, such as...
Jun, 06, 2012
On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical Computing take off

WHY NATIONAL CENTERS? Four National Centers for Biomedical Computing were launched by the NIH in 2004 with $20 million in funding for each center over five years. The reason: We need to make...
Jun, 01, 2005
Bringing the Fruits of Computation to Bear on Human Health: It’s a Tough Job but the NIH Has to Do It
The National Institutes of Health are on a mission: To understand and tackle the problems of human health. To make that daunting problem approachable, 15 of the 20 institutes divvy up human health...
Oct, 05, 2012
Microarrays: The Search For Meaning in a Vast Sea of Data

They've gone from hype to backlash. Now it's time for reality: How microarrays are being used to benefit healthcare

When DNA microarray technology emerged more than a decade ago, it was met with unbridled enthusiasm. By allowing scientists to look at the expression of enormous numbers of genes in the genome...
Oct, 01, 2006
Computing Gene Interactions: Functional and Statistical Approaches Converge

Epistasis explored

When people work together, some individuals may hinder team performance—essentially masking the abilities of other members—while others may boost the group’s performance beyond the...
epistasis
Sep, 01, 2011
  • ‹‹
  • 4 of 13
  • ››

SHARE THIS

  • Tweet
  • Email

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe