Home
  • About
  • Archive
  • Contact
  • Subscribe
Protein Structure Prediction: Getting it Right

Using Rosetta@Home, a program that runs on the personal computers of 150,000 volunteers worldwide, David Baker’s team predicted the structure of a 112-amino-acid protein from scratch.

When nature folds an amino acid sequence into a protein, it usually knows that just one conformation is the right one. But when a computer tries to do the same thing, it often predicts multiple...
Jan, 01, 2008
Profiles in Computer Science Courage Part II: Advice on Taking the Plunge
Words of Advice from the Scientists Featured in Profiles in Computer Science Courage   Find  Your Passion “Not every computer scientist will fall in love with the field like I did,...
Apr, 01, 2011
Behind the Connectome Commotion

Exploring the current state of connectomics--in the midst of hype

Connectomics is having a moment. Following on the heels of genomics, proteomics, transcriptomics, metabolomics, and microbiomics, the latest “omic” to seize the spotlight is generating...
brain, connectome
Jun, 20, 2013
Human Versus Machine: Biomedical expertise meets computer automation

Computers and human experts duke it out over who is better at diagnosing disease, interpreting images, or predicting protein structure

Dorothy Rosenthal tenses over her microscope, peering at the problematic nucleus on the Pap smear yet again. “It’s abnormal,” she decides, and then hesitates. “No, it’s...
Jul, 01, 2006
Jackson Pollock’s Protein Interaction Communities

Plot shows how functional communities in yeast protein interaction networks change in size and nature at different levels of resolution

Splashes of bold color seem to drip down the page, bringing to mind the paintings of Jackson Pollock. Spurred by the beauty of the image she had created, Anna Lewis,* a graduate student studying...
protein interaction networks
Apr, 01, 2011
The Eyes Have It: Biomechanical Models Explore Disorders of the Eye

Biomechanical models contribute to a better understanding of both the normal and the diseased eye.

Squint, and you can almost  make out that bird soaring over the horizon. But determining whether it’s a hawk or a raven will be nearly impossible for someone with myopia, also known as...
Feb, 19, 2013
SimVascular User Profile: Jay Humphrey, PhD

Jay Humphrey at Texas A&M collaborates with Simbios on a fluid/solid/growth model of the cardiovascular system.

from http://biomedicalcomputationreview.org/content/simbios-bringing-biomedical-simulation-your-fingertips   A new model of arteries that simultaneously simulates fluid, solid, and growth...
Oct, 01, 2009
Parallel Computing on a Personal Computer
Anyone who has ever waited minutes, hours, or even days for software to complete a biomedical computation will be happy to hear that almost every personal computer is capable of better. Today,...
Jul, 01, 2008
Discovering The Bugs Within
We are crawling with bugs. It might even be better to say that we are bugs. For every human cell in our bodies there may be ten or even a hundred other cells that aren’t human at all. Yet many...
Apr, 01, 2008
Assembling The Aging Puzzle: Computation Helps Connect the Pieces

The complexity and variability of aging itself, along with the fragmented nature of researchers’ current understanding of aging, call for tools that can help scientists dig through mounds of data to find often subtle connections.

Jeanne Louise Calment of Arles, France rode a bicycle until she was 100 years old. When she gave up smoking at age 117, her doctor suspected it was out of pride. (She couldn’t see well enough...
Apr, 01, 2008
  • ‹‹
  • 4 of 35
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe