Home
  • About
  • Archive
  • Contact
  • Subscribe
Taking the leap: from single genes to the molecular choreography of the cell
The Human Genome Project has spurred extraordinary developments in our ability to characterize cellular systems in high-throughput fashion. Polymorphism, methylation, gene expression, and proteomics...
Apr, 01, 2008
Betting on Genome Interpretation

Six startups jockey for a place at the table. Who will succeed?

A handful of startups are wagering that genome interpretation is the next big thing.    Why is this business space so hot?  “Once you can produce a better faster genome, thanks...
Jun, 20, 2013
Simulated Metabolism -- A First Step Toward Simulated Cells

Having developed detailed and sophisticated models of both E. Coli and human metabolism, researchers can begin to build toward a whole cell model that will be useful for the study of human health and disease.

If biologists really understood the functioning of the genome, they could in principle recreate it in silico. Instead of a choreographed swirl of molecules inside a living cell, electrons...
Oct, 01, 2008
Personalized Cancer Treatment: Seeking Cures Through Computation

Incremental progress and measured successes

Personalized cancer therapy is now a reality. A handful of tumor-classifying tests and targeted drugs are in widespread clinical use; and early attempts are underway to match high-risk cancer...
Califano, cancer, Cancer Genome Atlas, G-DOC, network analysis, systems biology
Jan, 02, 2012
Getting It Right: Better Validation Key to Progress in Biomedical Computing

Bringing models closer to reality

When the ill-fated space shuttle Columbia launched on January 16, 2003, a large piece of foam fell off and hit the left wing. Alerted of the impact, NASA engineers used a computer model to predict...
7009, competitions, outsource, self-assessment, validation
Oct, 19, 2012
Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

“We have recommendations for you,” announces the website Amazon.com each time a customer signs in.   This mega-retailer analyzes billions of customers’ purchases—nearly $...
Jan, 02, 2012
The Institute for Systems Biology

Pursuing the frontiers of systems biology in an interdisciplinary, non-academic enviroment

The Institute for Systems Biology (ISB) was founded in Seattle, Washington in 2000 by Leroy Hood, MD, PhD, Alan Aderem, PhD, and Reudi Aebersold, PhD. Five years later, they are pursuing the...
Apr, 01, 2006
Multiscale Modeling in Biomedical Research

New approaches extend multiscale models to represent cellular mesoscales and bridge from molecular to cellular models

In an era of increasingly comprehensive molecular characterizations of living systems, computation has emerged as a key technology to facilitate integrative understanding of biological mechanisms....
Feb, 19, 2013
The Physiome: A Mission Imperative

To understand biology—and provide appropriate medical care—scientists need to understand interactions across multiple scales. Hence the Physiome.

This is the reality of human biology: events span a 109 range in lengthscale (molecular to organismal) and a 1014 range in timescale (molecular movement to years). To understand this biology—...
Jun, 01, 2010
Behind the Connectome Commotion

Exploring the current state of connectomics--in the midst of hype

Connectomics is having a moment. Following on the heels of genomics, proteomics, transcriptomics, metabolomics, and microbiomics, the latest “omic” to seize the spotlight is generating...
brain, connectome
Jun, 20, 2013
  • ‹‹
  • 4 of 11
  • ››

SHARE THIS

  • Tweet
  • Email

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe