Home
  • About
  • Archive
  • Contact
  • Subscribe
DNA Shows Surprising Flexibility

Where simulation and theory converge

For decades, scientists have believed that DNA of short lengths (150 base pairs or fewer) behaves as a relatively stiff rod—able to quiver a bit, but rarely forming a circle or tight angle...
Apr, 01, 2007
Scientists Break Protein Folding Time Barrier

The Millisecond is Attained!

Scientists have now simulated protein folding at a timescale that begins to be relevant to biology: the millisecond. Indeed, the simulation busted through the millisecond time barrier to tackle the...
Apr, 01, 2010
Dogs, Doses, and Devices: The FDA's Ambitious Plans for Computational Modeling

Computational modeling can help fill gaps in how we develop and review new drugs and devices

What role does computational modeling play at the United States Food and Drug Administration (FDA)?  If you ask Paul Watkins, MD, director of the Hamner—University of North Carolina...
devices, drug discovery, FDA, modeling
Sep, 01, 2011
Computing Gene Interactions: Functional and Statistical Approaches Converge

Epistasis explored

When people work together, some individuals may hinder team performance—essentially masking the abilities of other members—while others may boost the group’s performance beyond the...
epistasis
Sep, 01, 2011
On Simulating Growth and Form

Simulations can teach us how young bodies and faces develop; how an artery compensates for decades of fatty plaque deposits by growing and thickening its walls; how tissue engineers can best coax endothelial cells to develop into organized sheets of skin for burn patients; and how cancerous tumors invade neighboring tissue.

For better or for worse, and on many levels, our tissues never stop growing and changing. While developing from childhood to old age, we grow not only bone, cartilage, fat, muscle and skin, but also...
Apr, 01, 2008
Cancer Proteins Show Off Their Networking Skills

Cancer proteins highly interactive

New research suggests that cancer proteins, like influential people, have the most connections. These results, from an extensive study of how human proteins interact with one another, could help...
Jan, 01, 2007
De Novo Protein Design: Designing Novel Proteins that Interact

Working in silico, researchers hone in on candidate proteins worthy of laboratory work

By stringing together amino acids in a prescribed sequence that then folds into a defined structure, nature designs proteins to perform specific functions. Nowadays, computational researchers are...
protein design
Sep, 01, 2011
A Crescendo of Protein Structures
A ten-year, $600-million program known as the Protein Structure Initiative (PSI) has already, in its five year pilot phase, greatly increased the speed at which protein structures can be determined,...
Jun, 01, 2005
Biomedical Computation Review: The Simbios 5th Anniversary Issue
Dear Reader,   In this eighteenth issue of Biomedical Computation Review (BCR), we bring you a special edition devoted to the work of the magazine’s publisher: the Simbios National Center...
Oct, 01, 2009
Untangling Integrative Analysis

How researchers are combining disparate data types and simulating systems that contain many different moving parts

13 years ago Markus Covert, PhD, read a New York Times article that changed his life.  The article quoted a prominent microbiologist who suggested that the ultimate test of one’s...
Feb, 16, 2013
  • ‹‹
  • 4 of 19
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe