Home
  • About
  • Archive
  • Contact
  • Subscribe
From SNPs to Prescriptions: Can Genes Predict Drug Response?

Decades of steady progress in pharmacogenetics have unearthed hundreds of associations between genes and drug response. But the field has to solve some theoretical and practical issues before it can deliver on the promise of personalized drug therapy.

As algorithms go, it’s deceptively simple. Just add together eight weighted pieces of patient information—age, height, weight, race, data about two genes, and a pair of clinical...
Jul, 01, 2009
The Ease and Grace of OpenSim 3.0

New release improves both GUI and API

OpenSim, the neuromuscular modeling and simulation software, is now available in a new digit: 3.0. The change (up from 2.4) reflects significant improvements that make this open source tool more...
OpenSim
Oct, 19, 2012
BIOSURVEILLANCE: From Text-mining to Freakidemiology

Researchers are expanding the types of data that can be used to predict infectious disease spread; developing novel ways to analyze that data; and trying to create systems that can help address public health problems today

American officials are seeking better ways to anticipate public health crises following ten years that have seen outbreaks of SARS, avian flu, H1N1, West Nile virus, cholera and, most recently,...
biosurveillance
Apr, 01, 2011
On Simulating Growth and Form

Simulations can teach us how young bodies and faces develop; how an artery compensates for decades of fatty plaque deposits by growing and thickening its walls; how tissue engineers can best coax endothelial cells to develop into organized sheets of skin for burn patients; and how cancerous tumors invade neighboring tissue.

For better or for worse, and on many levels, our tissues never stop growing and changing. While developing from childhood to old age, we grow not only bone, cartilage, fat, muscle and skin, but also...
Apr, 01, 2008
New Algorithm Finds Stories in Biomedical Literature

Algorithm joins related publications in a chain from start to finish

A good story ties up all the loose ends. A new data-mining tool takes a stab at doing the same. Dubbed storytelling, the algorithm may make it easier to unearth unexpected connections in the...
Jan, 01, 2007
Protein Structure Prediction: Getting it Right

Using Rosetta@Home, a program that runs on the personal computers of 150,000 volunteers worldwide, David Baker’s team predicted the structure of a 112-amino-acid protein from scratch.

When nature folds an amino acid sequence into a protein, it usually knows that just one conformation is the right one. But when a computer tries to do the same thing, it often predicts multiple...
Jan, 01, 2008
Neuron Models: Simpler Is Better

Competition inspires model improvements

During the summer of 2009, the International Neuroinformatics Coordinating Facility in Stockholm dangled a nearly $10,000 cash prize in front of neuron modelers and challenged them to do better. And...
Jan, 01, 2010
Packing It All In: Curricula for Biomedical Computing

Balancing Breadth and Depth

The last decade saw a proliferation of training programs at the intersection of life science and computation, with more than 60 new degree and certificate programs launched in the United States alone...
Sep, 01, 2005
Betting on Genome Interpretation

Six startups jockey for a place at the table. Who will succeed?

A handful of startups are wagering that genome interpretation is the next big thing.    Why is this business space so hot?  “Once you can produce a better faster genome, thanks...
Jun, 20, 2013
A Finer Fat Model

Models of healthy and diseased lipid profiles could prove valuable diagnostically.

When it comes to heart disease risk, “bad” and “good” cholesterol—also known as low density lipoproteins [LDL] and high density lipoproteins [HDL]—do not tell...
Oct, 01, 2008
  • ‹‹
  • 4 of 8
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Biomedical Computation Space

Defining biomedical computation

06/01/05 by David Paik, PhD, Executive Editor

The Last Word

06/01/05 by Katharine Miller

Welcome Back

About this issue of Biomedical Computation...

09/01/05 by David Paik, PhD, Executive Editor

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe