Home
  • About
  • Archive
  • Contact
  • Subscribe
From SNPs to Prescriptions: Can Genes Predict Drug Response?

Decades of steady progress in pharmacogenetics have unearthed hundreds of associations between genes and drug response. But the field has to solve some theoretical and practical issues before it can deliver on the promise of personalized drug therapy.

As algorithms go, it’s deceptively simple. Just add together eight weighted pieces of patient information—age, height, weight, race, data about two genes, and a pair of clinical...
Jul, 01, 2009
COMPUTATION FOR THE BEDSIDE: Optimizing Patient Care

How some tools are already impacting patients

Medical decision-making is often more art than science, requiring physicians to exercise judgment in the face of complex factual circumstances. But now a few tools offer the opportunity to...
AIDS, bone, kidney transplant
Apr, 01, 2011
Putting Heads Together
MICCAI 2007, the 10th International Conference on Medical Image Computing and Computer Assisted Intervention. What: MICCAI typically attracts over 600 world leading scientists, engineers and...
Oct, 01, 2007
Reverse Engineering the Brain
For a century, neuroscientists have dissected, traced, eavesdropped on, and are now compiling a seemingly endless cast of players in the nervous system. As we keep gathering more and more molecular...
neuron, reverse engineer
Apr, 01, 2009
Computer Vision that Mimics Human Vision

Computer vision program rivals the human ability to rapidly recognize objects in a complex picture

Our brains can recognize most of the things we pass on an evening stroll: Cars, buildings, trees, and people all register even at a great distance or from an odd angle. Now, a new computer vision...
Jul, 01, 2007
Computational Biology Catches the Flu: Modeling the bug, the host, the world
The flu virus is an evolutionary marvel. Teams of experts design an appropriate flu vaccine annually just to keep up with the microbe’s ability to evade the human immune system. Multiple...
Jul, 01, 2006
Trojan Peptide

How Tat crosses the lipid bilayer--with help from the bilayer.

A powerful snippet of protein called the Tat peptide ferries itself across cell membranes dragging just about anything it’s attached to along with it. How it accomplishes this feat has been a...
Jul, 01, 2008
The Epigenome: A New View Into the Book of Life

There is growing recognition that epigenetics may be just as important as genetics in human health and disease.

In the early 19th century, Jean-Baptiste Lamarck explained evolution as the inheritance of acquired traits; he believed that changes due to behaviors and exposures in one generation could be passed...
Jun, 01, 2010
The Active Transport of Ideas

Researchers examine the connection between editorial boards of medical informatics and bioinformatics journals

How ideas spread gets at the very fabric of scholarly research and has been studied from many different angles.   Many studies examine person-to-person connectivity in social networks. Within a...
Jul, 01, 2007
Simulated Faulty Folding: A Theoretical Model of Prion Propagation

Researchers have designed a protein that, in computer simulations, induces other proteins to misfold

Inside a live cell, strings of amino acids instantaneously fold into proteins with very specific shapes. Typically, no harm is done if a protein somehow folds into an unconventional configuration....
Sep, 01, 2005
  • ‹‹
  • 5 of 11
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Biomedical Computation Space

Defining biomedical computation

06/01/05 by David Paik, PhD, Executive Editor

The Last Word

06/01/05 by Katharine Miller

Welcome Back

About this issue of Biomedical Computation...

09/01/05 by David Paik, PhD, Executive Editor

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe