Home
  • About
  • Archive
  • Contact
  • Subscribe
Packing It All In: Curricula for Biomedical Computing

Balancing Breadth and Depth

The last decade saw a proliferation of training programs at the intersection of life science and computation, with more than 60 new degree and certificate programs launched in the United States alone...
Sep, 01, 2005
The Microbiome: Dealing with the Data Deluge

Bioinformatics and computational biology enable microbiome research

This past June, 200 members of the NIH-funded Human Microbiome Project (HMP) Consortium published a slew of papers offering fresh insights into the role microbial communities play in the human body...
JGI, microbiome
Oct, 22, 2012
Follow the Money: Big Grants in Biomedical Computing

The clear winner: Big Data

 

Several biomedical computing projects received big money in the fall of 2012. If there’s one clear winner, it’s “Big Data”: three of the grants focus on building new...
Feb, 19, 2013
Continuum Mechanical Modeling of Biological Growth
Unlike most classical engineering materials, biological tissues can adapt to external stimuli by growing in volume: Skin grows in response to wounding; muscles grow in response to exercise; cancer...
Apr, 01, 2011
Protein Mechanica: Structural Modeling for the Experimentalist

Filling a gap in single molecule experimental work

Scientists sometimes find themselves up to their elbows in Styrofoam balls, pipe cleaners, and metal rods as they try to build models of the molecules they are studying. Now, they can exchange all...
Apr, 01, 2010
Hot Bodies a Lure for Unseen Specks

Computing airflow dynamics

We can’t see them, but tiny particles—dust, pollen, microbes, and the like—swirl around us in complicated, turbulent pathways. New numerical simulations suggest that, at least in...
Jun, 01, 2010
Modeling Cancer Biology: Reaching beyond human intuition and linear thinking

How mathematical models are transforming the fight against cancer

The most common test for prostate cancer (known as PSA screening) misses aggressively growing prostate tumors—the type typically seen in young patients. It’s a fact that was accepted by...
Apr, 01, 2007
COMPUTATION FOR THE BEDSIDE: Optimizing Patient Care

How some tools are already impacting patients

Medical decision-making is often more art than science, requiring physicians to exercise judgment in the face of complex factual circumstances. But now a few tools offer the opportunity to...
AIDS, bone, kidney transplant
Apr, 01, 2011
Cooking Cancer With Gold Nanoshells

Computationally modeling the hot spots

Tiny gold particles that absorb laser light and convert it into heat are a promising therapy for destroying tumors. However, controlling the temperature of such gold nanoshells is crucial: The shells...
Jan, 01, 2010
Trajectory Optimization and Physical Realism

How adding jet packs to characters' hands can help optimize animations

An animated human figure seeking the optimal path from point A to point B typically relies on computationally expensive hard constraints that force the trajectories to be physically realistic. But...
Jun, 20, 2013
  • ‹‹
  • 5 of 26
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Biomedical Computation Space

Defining biomedical computation

06/01/05 by David Paik, PhD, Executive Editor

The Last Word

06/01/05 by Katharine Miller

Welcome Back

About this issue of Biomedical Computation...

09/01/05 by David Paik, PhD, Executive Editor

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe