Home
  • About
  • Archive
  • Contact
  • Subscribe
The Dawn of Brain-Machine Interfaces

Brain implants are giving hope to the disabled and revolutionizing neuroscience

Matthew Nagle can move a cursor on a computer screen with only the power of his thoughts. It’s a remarkable feat for anyone, but especially momentous for Nagle, who is paralyzed from the neck...
Aug, 31, 2005
A Giant Leap for Open Source Simulation
Researchers can now create musculoskeletal models and simulations on an open source platform. In August, Simbios researchers released OpenSim 1.0. This freely available software can, in about 20...
Oct, 01, 2007
Genetic Variants and Ill Health: Scanning 500,000 SNPs Yields Gene-Disease Connections

It's an exhilarating time for genome-wide association studies

For the past few months it seemed you couldn’t open a journal without reading results of a new genome-wide association study. The results kept pouring in: four studies in April showing seven...
Oct, 01, 2007
From Sight to Insight: Visualization tools yield biomedical success stories
They're more than just pretty pictures adorning office walls and presentation slides. Beamed into operating room computer monitors, they're guiding the scalpels of brain surgeons. Dancing...
Jan, 01, 2012
Matters of Time: Tick Tock Go the Simulations

Computing using time steps -- a necessary approximation

Time flows like a continuous, steady river. And it moves forward—never back. These facts create inherent challenges for computer simulations of biological molecules in motion.   It would...
molecular dynamics, timesteps
Jun, 19, 2013
SimVascular to Simulate Cardiovascular Flow
On the computer screen, vessels throb realistically with each pump of the heart while the river of blood swirls and pools at curves and intersections. This is a simulation built with SimVascular...
Apr, 01, 2007
Modeling the Deformable Body
August 2007 saw a surge of new open-source software for simulating musculoskeletal movement. In addition to OpenSim 1.0 (described in the Fall 2007 issue of this magazine), FEBio arrived on the scene...
Apr, 01, 2008
Trajectory Optimization and Physical Realism

How adding jet packs to characters' hands can help optimize animations

An animated human figure seeking the optimal path from point A to point B typically relies on computationally expensive hard constraints that force the trajectories to be physically realistic. But...
Jun, 20, 2013
Grand Challenge Competition Provides Rich Data Set to Improve Joint Contact Force Predictions
There are numerous musculoskeletal modeling methods available to make predictions of muscle and joint contact forces. While such predictions can help improve treatments for movement-related disorders...
knee
Jan, 02, 2012
Cell Division’s Surprise Twist
During the final step of cell division, a ring of proteins pinches the cell in two—a process often likened to a purse string drawing shut. The analogy evokes a picture of thread-like proteins...
Apr, 01, 2008
  • ‹‹
  • 5 of 16
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe