Home
  • About
  • Archive
  • Contact
  • Subscribe
Three New Centers
The National Institutes of Health Roadmap for Medical Research has recently completed the first stage of an ambitious program to expand the computational infrastructure and software tools needed to...
Jan, 01, 2006
Vertex Classification in Graphs

How can they help us understand proteins?

Graphs, or networks, have been widely adopted in computational biology, with examples including protein-protein interaction networks, gene regulatory networks, and residue interaction networks in...
Jun, 20, 2013
Structural Genomics: Exploring the 3D Protein Landscape

How increased coverage of the structure space is transforming the field of biology

When the human genome was completely sequenced in 2003, researchers were already pondering how biomedicine could make use of it.  One hope was that the sequences would lead to a greater...
Jan, 01, 2010
Mining Biomedical Literature: Using Computers to Extract Knowledge Nuggets

Researchers are not simply retrieving and repackaging what is already known, but are also deriving new knowledge by discovering connections that were previously unnoticed.

Not long ago, reading biomedical literature involved hours in the library combing through rows of dusty periodicals—not to mention pocketfuls of change for the copy machine. Now, although the...
Jul, 01, 2008
OpenMM: Bringing GPU Acceleration Capabilities to Molecular Dynamics

OpenMM provides a common interface for doing MD simulations on GPUs

Over the last three years, the lab of Vijay Pande, PhD, at Stanford University has optimized their molecular dynamics (MD) algorithms to take advantage of the fast computing that’s possible...
Jul, 01, 2008
Assembling The Aging Puzzle: Computation Helps Connect the Pieces

The complexity and variability of aging itself, along with the fragmented nature of researchers’ current understanding of aging, call for tools that can help scientists dig through mounds of data to find often subtle connections.

Jeanne Louise Calment of Arles, France rode a bicycle until she was 100 years old. When she gave up smoking at age 117, her doctor suspected it was out of pride. (She couldn’t see well enough...
Apr, 01, 2008
Simplifying the Science and Art of Molecular Dynamics
Using molecular dynamics (MD) software, scientists can simulate molecular movement to study biological phenomena that currently cannot be observed experimentally.    But the value of MD...
Jul, 01, 2009
Accurate Molecular Dynamics Force Fields for the Scientific Masses

AMOEBA's polarizable force field now integrated with OpenMM

Many have long hoped that molecular dynamics calculations—the computation of how molecules move and interact with other molecules—would revolutionize the world of synthetic chemistry,...
AMOEBA, force field, OpenMM, polarizable force field
Sep, 01, 2011
Now Available: User-Friendly RNA Dynamics Applications
Now, with just a few mouse clicks, anyone with a computer and an Internet connection can create graphic images of RNA molecules (using ToRNADo) or generate the ion environments that surround these...
Jan, 01, 2007
Modeling Early Evolution
The fittest organisms survive and produce offspring, according to the Darwinian theory of natural selection. And the changes that make an organism fit happen at the molecular level: when genes mutate...
Oct, 01, 2007
  • ‹‹
  • 5 of 19
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Biomedical Computation Space

Defining biomedical computation

06/01/05 by David Paik, PhD, Executive Editor

The Last Word

06/01/05 by Katharine Miller

Welcome Back

About this issue of Biomedical Computation...

09/01/05 by David Paik, PhD, Executive Editor

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe