Home
  • About
  • Archive
  • Contact
  • Subscribe
More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

To the casual observer, stem cells offer the almost magical promise of—Voila!—turning into exactly the kind of cell needed to repair an injured spinal cord or replace a damaged organ. And...
stem cell
Apr, 01, 2010
Bringing Supercomputers to Life (Sciences)

Supercomputers open up new horizons, offering the possibility of discovering new ways to understand life’s complexity

Their very names sound like dinosaurs. Teracomputers. Petacomputers. These are, in fact, the dinosaurs of the digital world—monstrous, hungry and powerful. But unlike the extinct...
Oct, 01, 2006
The Golden Age of Public Databases: Speeding Biomedical Discovery

Public databases impact not only how research is done but what kind of research is done in the first place.

The setting: a scientific conference in January 2008. The speaker, Bruce Ponder, MD, PhD, an oncology professor at Cambridge University, is describing a previously unknown link between a particular...
Oct, 01, 2008
Window into Microbial Behavior

Metagenomes give a picture of the genes driving metabolic processes important to bacterial growth and survival in different environments.

We know they are there, but most microbial denizens of deep oceans, sea floor vents, even our own intestines, remain a mystery. Because most microbes won’t grow in the lab, researchers have few...
Jul, 01, 2008
Predicting Protein Complexes

A combination of genomics data and molecular dynamics modeling is sufficient to predict protein complex structure

The zone where two proteins interact presents a possible target for drug design. But identifying possible drugs requires a detailed understanding of the interface between the proteins. Computer...
Apr, 01, 2010
Share and Share Alike: A Proposed Set of Guidelines for Both Data and Software
A pair of challenges increasingly threaten the success of bioinformatics research: convincing biologists to share their data and convincing computational colleagues to share their code. Many of us...
Jul, 01, 2006
Where Proteins Go To Work

Predicting protein localization

Joe works in a factory; Jane works in a hospital; protein X works in the Golgi apparatus. Just as one might guess a worker’s job by knowing where he or she is employed, biologists can guess a...
Apr, 01, 2006
Protein Structure Prediction: Getting it Right

Using Rosetta@Home, a program that runs on the personal computers of 150,000 volunteers worldwide, David Baker’s team predicted the structure of a 112-amino-acid protein from scratch.

When nature folds an amino acid sequence into a protein, it usually knows that just one conformation is the right one. But when a computer tries to do the same thing, it often predicts multiple...
Jan, 01, 2008
New Technology Reveals the Genome’s 3D Shape

Hi-C technique looks at chromosomes at unprecedented level of resolution

Try taking a human hair as long as Manhattan and cramming it—unsnarled—inside a marble. This is the challenge faced by a 2-meter-long strand of DNA as it folds into its compact array of...
Jan, 01, 2010
Modeling Early Evolution
The fittest organisms survive and produce offspring, according to the Darwinian theory of natural selection. And the changes that make an organism fit happen at the molecular level: when genes mutate...
Oct, 01, 2007
  • ‹‹
  • 5 of 8
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Biomedical Computation Space

Defining biomedical computation

06/01/05 by David Paik, PhD, Executive Editor

The Last Word

06/01/05 by Katharine Miller

Welcome Back

About this issue of Biomedical Computation...

09/01/05 by David Paik, PhD, Executive Editor

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe