Home
  • About
  • Archive
  • Contact
  • Subscribe
Ramping Up to Multiscale: Taking Biomedical Modeling to a New Level

Multi-scale modeling is now at what might be called its gestational stage

For centuries, mathematics has been an indispensable ally of the physical sciences and engineering. Planes fly and telephones work because engineers know how to simplify physical systems into...
Apr, 01, 2006
Zooming In on Blood Coagulation and Viscosity: Computation Takes On Blood Behavior

Simulations illuminate the inner workings of blood at multiple levels

Understanding blood flow and coagulation is crucial to treating blood disorders such as hemophilia and thrombosis, and to dealing with diseases such as AIDS, malaria, and diabetes that have...
Jun, 07, 2012
Predicting Protein Complexes

A combination of genomics data and molecular dynamics modeling is sufficient to predict protein complex structure

The zone where two proteins interact presents a possible target for drug design. But identifying possible drugs requires a detailed understanding of the interface between the proteins. Computer...
Apr, 01, 2010
Trawling for Drug-Gene Relationships

Database automatically mines literature for drug-gene relationships--and does it as well as manually curated databases.

When a drug saves one person but makes another ill, a bitter lesson in genetic differences often follows. With many such lessons already under our collective belts, researchers are using existing...
Jan, 01, 2010
Dimension Reduction and Manifold Learning: When Less Is More
The Fall 2005 “Under the Hood” column discussed the curse of dimensionality—too many numerical components for each data point—and the curse of dataset sparsity—too few...
Oct, 01, 2010
Neurons Seek Their Own Solution

Computer models find that various ion channel arrangements can produce the same firing pattern

Each cell in our nervous system is an instrument in a complex symphony of electrophysiologic communication. A neuron’s signaling abilities arise from its array of ion channels—tunnels...
Jan, 01, 2007
Spaced out Neurons

A grant to develop software tools to analyze how neurons distribute themselves within the brain

Do neurons need personal space like people in an elevator? Are they influenced by their neighbors or do they randomly find a home in the brain? If the arrangement is patterned, what is the cause of...
neurons, software
Jun, 01, 2005
Resolution Limits of Optical Microscopy and the Mind

How precise an image can fluorescence microscopy provide?

As modern optics and cell biology have flourished in recent years, they’ve each driven innovation in the other. Yet commonly employed imaging techniques, such as fluorescence microscopy, have...
fluorescence, microscopy
Sep, 01, 2011
Reverse Engineering the Brain
For a century, neuroscientists have dissected, traced, eavesdropped on, and are now compiling a seemingly endless cast of players in the nervous system. As we keep gathering more and more molecular...
neuron, reverse engineer
Apr, 01, 2009
Prototype to Release: Software Engineering for Scientific Software

Set objectives and follow through

Having engineered several scientific software applications for public consumption, the authors know from experience that the process offers unique challenges. Typically, the algorithms being...
Oct, 22, 2012
  • ‹‹
  • 6 of 24
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade

A recognition of biocomputing's successes...

06/01/05 by Eric Jakobsson, PhD

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Spaced out Neurons

A grant to develop software tools to analyze...

06/01/05 by Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are...

04/01/10 by Katharine Miller

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe