Home
  • About
  • Archive
  • Contact
  • Subscribe
On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical Computing take off

WHY NATIONAL CENTERS? Four National Centers for Biomedical Computing were launched by the NIH in 2004 with $20 million in funding for each center over five years. The reason: We need to make...
Jun, 01, 2005
Share and Share Alike: A Proposed Set of Guidelines for Both Data and Software
A pair of challenges increasingly threaten the success of bioinformatics research: convincing biologists to share their data and convincing computational colleagues to share their code. Many of us...
Jul, 01, 2006
ENCODE's Threads

A novel approach to publishing for large research projects

When a large research project generates lots of data over a long time, that data can tell many different stories. Such was the case when the ENCODE (Encyclopedia of DNA Elements) project geared up to...
Oct, 22, 2012
The Function of DNA Form
According to a new computational analysis of DNA structure, variations in DNA shape—along the grooves of the double helix—may play an important role in defining how the genome works. The...
Jul, 01, 2009
Bringing the Fruits of Computation to Bear on Human Health: It’s a Tough Job but the NIH Has to Do It
The National Institutes of Health are on a mission: To understand and tackle the problems of human health. To make that daunting problem approachable, 15 of the 20 institutes divvy up human health...
Oct, 05, 2012
Microarrays: The Search For Meaning in a Vast Sea of Data

They've gone from hype to backlash. Now it's time for reality: How microarrays are being used to benefit healthcare

When DNA microarray technology emerged more than a decade ago, it was met with unbridled enthusiasm. By allowing scientists to look at the expression of enormous numbers of genes in the genome...
Oct, 01, 2006
Misconceptions of Time

Getting the molecular dynamics car out of the garage

For those who are not practitioners of dynamical simulation methods, such as molecular dynamics (MD), one of the biggest misconceptions relates to time. Specifically, the mismatch between the...
molecular dynamics simulations, time
Jun, 19, 2013
On Simulating Growth and Form

Simulations can teach us how young bodies and faces develop; how an artery compensates for decades of fatty plaque deposits by growing and thickening its walls; how tissue engineers can best coax endothelial cells to develop into organized sheets of skin for burn patients; and how cancerous tumors invade neighboring tissue.

For better or for worse, and on many levels, our tissues never stop growing and changing. While developing from childhood to old age, we grow not only bone, cartilage, fat, muscle and skin, but also...
Apr, 01, 2008
The Physiome: A Mission Imperative

To understand biology—and provide appropriate medical care—scientists need to understand interactions across multiple scales. Hence the Physiome.

This is the reality of human biology: events span a 109 range in lengthscale (molecular to organismal) and a 1014 range in timescale (molecular movement to years). To understand this biology—...
Jun, 01, 2010
Digging Into Pixels: Radiogenomics Extracts Meaning

Seeking a non-invasive approach to cancer diagnosis and prognosis

In a radiological image, a tumor’s edges might appear fuzzy or crisp; its shape could range from oval to many-lobed; and its density and texture might vary across the tumor. To determine...
imaging, radiogenomics
Jun, 19, 2013
  • ‹‹
  • 6 of 23
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Biomedical Computation Space

Defining biomedical computation

06/01/05 by David Paik, PhD, Executive Editor

The Last Word

06/01/05 by Katharine Miller

Welcome Back

About this issue of Biomedical Computation...

09/01/05 by David Paik, PhD, Executive Editor

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe