Home
  • About
  • Archive
  • Contact
  • Subscribe
Integrative Cancer Biology Program is Born
The National Cancer Institute launched the Integrative Cancer Biology Program (ICBP) in October 2004, providing a total of $15 million to nine multidisciplinary centers. The goal: to use predictive...
cancer, integrative
Jun, 01, 2005
Building RNA 3-D Structure
The structure of RNA is an important key to its function—including its role in disease. However, the structure of most RNAs is unknown because their extreme flexibility and high charge...
Mar, 01, 2009
SimVascular to Simulate Cardiovascular Flow
On the computer screen, vessels throb realistically with each pump of the heart while the river of blood swirls and pools at curves and intersections. This is a simulation built with SimVascular...
Apr, 01, 2007
NewsBytes: Winter 2005-2006
T-Rex in the Slow Lane by Kristen Cobb   Tyrannosaurus rex is often pictured baring its teeth, crouching, and running swiftly after its prey, but these images are largely based on human fancy...
Jan, 01, 2006
Putting Heads Together

Upcoming biocomputing conferences

The 6th Annual International Conference on Computational Systems Bioinformatics (CSB2007) coordinated by the Life Sciences Society. WHAT: This conference is designed for any scientist interested in...
Jul, 01, 2007
More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

To the casual observer, stem cells offer the almost magical promise of—Voila!—turning into exactly the kind of cell needed to repair an injured spinal cord or replace a damaged organ. And...
stem cell
Apr, 01, 2010
Reverse-Engineering Transcriptional Networks

Finding the Master Regulators

A cell may change states several times in its lifetime—from a stem cell to a specialized cell, for example, or from a normal cell to a cancerous one. Each time this happens, a veritable army of...
Apr, 01, 2010
BCATS: Not Your Usual Biomedical Computation Conference

Students, not faculty, are the ones in charge

Outwardly, the Biomedical Computation at Stanford (BCATS) conference resembles other academic conferences: Researchers converge to hear about the latest developments in their field and to...
Jan, 01, 2008
Implicit Representation of Biological Shapes and Forms
  Imaging, geometric modeling, representation and computing of shapes and forms are important components of modern computational biology. These processes apply across wide spectra of scales,...
Oct, 03, 2012
Follow the Money: Big Grants in Biomedical Computing

A virtual lab rat; simulated DNA; an artificial pancreas; & integrating mental health data

Several biomedical computing projects received multi-million dollar funding in the fall of 2011, including efforts to: simulate the cardiac physiology of the rat; build a state-of-the-art DNA...
diabetes, DNA, Orozco, pancreas
Jan, 02, 2012
  • ‹‹
  • 6 of 15
  • ››

SHARE THIS

  • Tweet
  • Email

RELATED ARTICLES

On Your Mark, Get Set, Build Infrastructure: The NCBC Launch

The first four National Centers for Biomedical...

06/01/05 by Katharine Miller with an Introduction by Eric Jakobsson, PhD

Biomedical Computation Space

Defining biomedical computation

06/01/05 by David Paik, PhD, Executive Editor

The Last Word

06/01/05 by Katharine Miller

Welcome Back

About this issue of Biomedical Computation...

09/01/05 by David Paik, PhD, Executive Editor

POPULAR ARTICLES

Big Data Analytics In Biomedical Research

Can the complexities of biology be boiled down to Amazon.com-style recommendations?  The examples here suggest possible pathways to an intelligent healthcare system with big data at its core.

01/02/12 by Katharine Miller

AlloPathFinder User Profile: Jung-Chi Liao

Columbia’s Jung-Chi Liao seeks pathways within proteins using AlloPathFinder, a Simbios tool he co-developed while at Stanford.

10/01/09 by Kristin Sainani, PhD, and Katharine Miller

More Than Fate: Computation Addresses Hot Topics in Stem Cell Research

Using computational models, researchers are gaining traction toward understanding what makes a stem cell a stem cell; how gene expression drives stem cell differentiation; why studying stem cell heterogeneity is important; and, ultimately, how stem cells control their fate.

04/01/10 by Katharine Miller

Popular Tags

DATA MINING  visualization

genomics  SIMULATION neuroscience

biomechanics Systems Biology

DRUG DISCOVERY Cancer DNA

Molecular Dynamics bioinformatics

SUBSCRIBE TO

RSS Feed
Subscribe to Print Edition
simbios logo

Supported by the National
Institutes of Health through
the NIH Roadmap for
Medical Research Grant.

Stanford University
James H. Clark Center S231
318 Campus Drive, MC: 5448
Stanford, CA 94305-5444

  • About
  • Archive
  • Contact
  • Subscribe